cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300275 G.f.: 1 + Sum_{n>=1} a(n)*x^n/(1 - x^n) = Product_{n>=1} 1/(1 - x^n)^n.

Original entry on oeis.org

1, 2, 5, 10, 23, 40, 85, 147, 276, 474, 858, 1421, 2484, 4079, 6850, 11137, 18333, 29277, 47329, 74768, 118703, 185614, 290782, 449568, 696009, 1066258, 1632376, 2479057, 3759611, 5661568, 8512308, 12722132, 18974109, 28157619, 41690937, 61453929, 90379783
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 01 2018

Keywords

Comments

Moebius transform of A000219.
From Gus Wiseman, Jan 21 2019: (Start)
Also the number of plane partitions of n with relatively prime entries. For example, the a(4) = 10 plane partitions are:
31 211 1111
.
3 21 11 111
1 1 11 1
.
2 11
1 1
1 1
.
1
1
1
1
Also the number of plane partitions of n whose multiset of rows is aperiodic, meaning its multiplicities are relatively prime. For example, the a(4) = 10 plane partitions are:
4 31 22 211 1111
.
3 21 111
1 1 1
.
2 11
1 1
1 1
(End)

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(
          b(n-j)*sigma[2](j), j=1..n)/n)
        end:
    a:= n-> add(b(d)*mobius(n/d), d=divisors(n)):
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    nn = 37; f[x_] := 1 + Sum[a[n] x^n/(1 - x^n), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - Product[1/(1 - x^n)^n, {n, 1, nn}], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
    s[n_] := SeriesCoefficient[Product[1/(1 - x^k)^k, {k, 1, n}], {x, 0, n}]; a[n_] := Sum[MoebiusMu[n/d] s[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 37}]

Formula

a(n) = Sum_{d|n} mu(n/d)*A000219(d).