cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300295 Denominator of (1/3)*n*(n + 2)/((1 + 2*n)*(3 + 2*n)).

Original entry on oeis.org

1, 15, 105, 63, 99, 429, 195, 85, 969, 133, 483, 1725, 675, 783, 2697, 1023, 385, 3885, 481, 1599, 5289, 1935, 2115, 6909, 2499, 901, 8745, 1045, 3363, 10797, 3843, 4095, 13065, 4623, 1633, 15549, 1825, 5775, 18249, 6399, 6723, 21165, 7395, 2581, 24297, 2821, 8835, 27645, 9603, 9999, 31209, 10815, 3745
Offset: 0

Views

Author

Wolfdieter Lang, Mar 15 2018

Keywords

Comments

The corresponding numerators are given in A144454(n+1).
r(n) = A144454(n+1)/a(n) = Sum_{k=0..n-1} 1/(A(k)*A(k+1)*A(k+2)), with A(j) = 1 + 2*j = A005408(n) for n >= 1, and r(0) = 0. This can be written as r(n) = 1/12 - 1/(4*A(n)*A(n+1)) = (1/3)*n*(n + 2)/(A(n)*A(n+1)). See Jolley, p. 40/41, (209), and the general remark on p. 38, (201). The value of the infinite series is therefore 1/12.
For the proof that numerator(r(n)) = A144454(n+1) one checks the formula with (mod 9) and (mod 3) given there. E.g., if n = 1 + 9*k then r(n-1) = k*(2 + 9*k)/((1 + 6*k)*(1 + 18*k)) and numerator(r(n-1)) = k*(2 + 9*k) = ((n-1)^2 - )/9 as claimed, because this ratio for r(n-1) is in lowest terms.

Examples

			The series begins: 1/(1*3*5) + 1/(3*5*7) + 1/(5*7*9) + ...
The partial sums are r(n) = A144454(n+1)/a(n), n >= 1, and with r(0) = 0 they begin with 0/1, 1/15, 8/105, 5/63, 8/99, 35/429, 16/195, 7/85, 80/969, 11/133, 40/483, 143/1725, 56/675, 65/783, 224/2697, 85/1023, 32/385,...
		

References

  • L. B. W. Jolley, Summation of Series, Dover Publications, 2nd rev. ed., 1961, pp. 38, 40, 41.

Crossrefs

Cf. A005408, A144454(n+1) (numerators).

Programs

  • Mathematica
    Table[(n(n+2))/(3(1+2n)(3+2n)),{n,0,60}]//Denominator (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    a(n) = denominator((1/3)*n*(n + 2)/((1 + 2*n)*(3 + 2*n))); \\ Michel Marcus, Mar 15 2018

Formula

a(n) = denominator(r(n)), with r(n) = (1/3)*n*(n + 2)/((1 + 2*n)*(3 + 2*n)), n >= 0. r(n-1) = (1/3)*(n^2 - 1)/((2*n)^2 -1), n >= 1.
G.f. for r(n) = A144454(n+1)/a(n): G(x) = (1/12)*(1 - hypergeometric([1, 2], [5/2], -x/(1-x)))/(1-x) = ((-3 + 5*x)*sqrt(x)/sqrt(1 - x) + 3*sqrt(1 - x)*(1 - x)*arcsinh(sqrt(x)/sqrt(1 - x)))/(24*x*(1 - x)*sqrt(x)/sqrt(1 - x))
= ((-3 + 5*x)*sqrt(x/(1-x)) + 3*(1 - x)*sqrt(1 - x)*log((1 + sqrt(x))/sqrt(1 - x)))/(24*x*(1 - x)*sqrt(x/(1 - x))).