cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300299 Denominators of r(n) := Sum_{k=0..n-1} 1/Product_{j=0..4} (k + j + 1), for n >= 0, with r(0) = 0.

Original entry on oeis.org

1, 120, 720, 1680, 2240, 12096, 20160, 31680, 23760, 11440, 12012, 32760, 174720, 76160, 293760, 372096, 116280, 17955, 117040, 425040, 1020096, 1214400, 478400, 1684800, 982800, 1140048, 657720, 125860, 3452160, 3928320
Offset: 0

Views

Author

Wolfdieter Lang, Apr 05 2018

Keywords

Comments

For the numerators see A300298, also for a comment and the Jolley reference. The g.f. of {r(n)}_{n>=0} and examples are given there too.

Crossrefs

Cf. A300298.

Programs

  • GAP
    List(List([0..40],n->Sum([0..n-1],k->1/(Product([0..4],j->k+j+1)))),DenominatorRat); # Muniru A Asiru, Apr 05 2018
    
  • Magma
    [Denominator(n*(50+35*n+10*n^2+n^3)/(96*(1+n)*(2+n)*(n+3)*(4+n))): n in [0..50]]; // Vincenzo Librandi, Apr 06 2018
  • Mathematica
    Table[Denominator[n (50 + 35 n + 10 n^2 + n^3) / (96 (1 + n)(2 + n) (n + 3) (4 + n))], {n, 0, 50}] (* Vincenzo Librandi, Apr 06 2018 *)
  • PARI
    a(n) = denominator(sum(k=0, n-1, prod(j=0, 4, (k+j+1))^(-1))); \\ Altug Alkan, Apr 05 2018
    

Formula

a(n) = denominator(r(n)), with the result of the sum given in the name r(n) = n*(50 + 35*n + 10*n^2 + n^3)/(96*(1 + n)*(2 + n)*(n + 3)*(4 + n)), n >= 0.