cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300323 Number of Dyck paths of semilength n such that the area under the right half of the path equals the area under the left half of the path.

Original entry on oeis.org

1, 1, 2, 3, 6, 12, 28, 69, 186, 522, 1536, 4638, 14408, 45568, 146884, 479871, 1589516, 5320854, 18000198, 61412376, 211282386, 731973720, 2553168136, 8957554412, 31604599044, 112060048354, 399227283950, 1428315878002, 5130964125124, 18499652813682
Offset: 0

Views

Author

Alois P. Heinz, Mar 02 2018

Keywords

Examples

			              /\
             /  \      /\/\
a(3) = 3:   /    \    /    \    /\/\/\ .
.
a(5) = 12 counts A001405(5) = 10 symmetric plus 2 non-symmetric Dyck paths:
             /\  /\
          /\/  \/  \  and its reversal.
		

Crossrefs

Column k=0 of A300322.
Cf. A000108 (all Dyck paths), A000225, A001405 (symmetric Dyck paths), A129182, A239927, A298645.

Programs

  • Maple
    b:= proc(x, y) option remember; expand(`if`(x=0, 1,
          `if`(y<1,   0, b(x-1, y-1)*z^(2*y-1))+
          `if`(x add(coeff(p, z, i)^2
          , i=0..degree(p)))(b(n, n-2*j)), j=0..n/2)
        end:
    seq(a(n), n=0..32);
  • Mathematica
    b[x_, y_] := b[x, y] = Expand[If[x == 0, 1, If[y < 1, 0, b[x - 1, y - 1] z^(2y - 1)] + If[x < y + 2, 0, b[x - 1, y + 1] z^(2y + 1)]]];
    a[n_] := a[n] = Sum[Function[p, Sum[Coefficient[p, z, i]^2, {i, 0, Exponent[p, z]}]][b[n, n - 2j]], {j, 0, n/2}];
    Table[a[n], {n, 0, 32}] (* Jean-François Alcover, May 31 2018, from Maple *)

Formula

a(n) >= A001405(n) with equality only for n <= 4.
a(n) is odd <=> n in { A000225 }.