cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300365 Balanced primes of order fourteen.

Original entry on oeis.org

5297, 15647, 22073, 22501, 26309, 34721, 43499, 44111, 48809, 57529, 58171, 66797, 69151, 70199, 74551, 76493, 86959, 91297, 93169, 93199, 94343, 102217, 110777, 112289, 113093, 132361, 133493, 135461, 139921, 146021, 155303, 156521, 162557, 163753, 163789
Offset: 1

Views

Author

Muniru A Asiru, Mar 04 2018

Keywords

Examples

			5297 is a member because 5297 = 5167 + 5171 + 5179 + 5189 + 5197 + 5209 + 5227 + 5231 + 5233 + 5237 + 5261 + 5273 + 5279 + 5281 + 5297 + 5303 + 5309 + 5323 + 5333 + 5347 + 5351 + 5381 + 5387 + 5393 + 5399 + 5407 + 5413 + 5417 + 5419  = 153613/29.
		

Crossrefs

Cf. Balanced primes of order b: A006562 (b=1), A082077 (b=2), A082078 (b=3), A082079 (b=4), A096697 (b=5), A096698 (b=6), A096699 (b=7), A096700 (b=8), A096701 (b=9), A096702 (b=10), A096703 (b=11), A096704 (b=12), A300364 (b=13) this sequence (b=14).

Programs

  • GAP
    P:=Filtered([1..200000],IsPrime);;
    a:=List(Filtered(List([0..17000],k->List([1..29],j->P[j+k])),i->Sum(i)/29=i[15]),m->m[15]);
  • Mathematica
    Module[{bal=14,nn=16000},Select[Partition[Prime[Range[nn]],2bal+1,1],Mean[#]==#[[bal+1]]&]][[;;,15]] (* Harvey P. Dale, Jul 07 2023 *)