A300387 The number of paths of length 9*n from the origin to the line y = 2*x/7 with unit East and North steps that stay below the line or touch it.
1, 4, 178, 11654, 900239, 76266406, 6853777795, 641688752961, 61916364799849, 6113859987916630, 614832988424140624, 62752222758863566993, 6483650829899569496380, 676834416167597357806799, 71278487569046416052210050, 7563527671079260544924794587, 807900192360879042402313084390
Offset: 0
Examples
For n=1, the possible walks are EEEEEEENN, EEEEEENEN, EEEEENEEN, EEEENEEEN.
Links
- M. T. L. Bizley, Derivation of a new formula for the number of minimal lattice paths from (0, 0) to (km, kn) having just t contacts with the line my = nx and having no points above this line; and a proof of Grossman's formula for the number of paths which may touch but do not rise above this line, Journal of the Institute of Actuaries, Vol. 80, No. 1 (1954): 55-62. [Cached copy]
- Bryan Ek, Lattice Walk Enumeration, arXiv:1803.10920 [math.CO], 2018.
- Bryan Ek, Unimodal Polynomials and Lattice Walk Enumeration with Experimental Mathematics, arXiv:1804.05933 [math.CO], 2018.
Programs
-
Mathematica
terms = 17; f[_] = 0; Do[f[t_] = f[t]^36 t^4 + 3 f[t]^29 t^3 - f[t]^28 t^3 + 4 f[t]^27 t^3 + 3 f[t]^22 t^2 - 2 f[t]^21 t^2 + 6 f[t]^20 t^2 - 3 f[t]^19 t^2 + 6 f[t]^18 t^2 + f[t]^15 t - f[t]^14 t + 2 f[t]^13 t - 2 f[t]^12 t + 3 f[t]^11 t - 3 f[t]^10 t + 4 f[t]^9 t + 1 + O[t]^terms, {terms}]; CoefficientList[f[t], t] (* Jean-François Alcover, Dec 04 2018 *) nmax = 20; CoefficientList[Series[Exp[Sum[Binomial[9*k, 2*k]*x^k/(9*k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 16 2021 *)
Formula
G.f. satisfies: f=f^36*t^4+3*f^29*t^3-f^28*t^3+4*f^27*t^3+3*f^22*t^2-2*f^21*t^2+6*f^20*t^2-3*f^19*t^2+6*f^18*t^2+f^15*t-f^14*t+2*f^13*t-2*f^12*t+3*f^11*t-3*f^10*t+4*f^9*t+1.
From Peter Bala, Jan 03 2019: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} (1/9)*binomial(9*n, 2*n)*x^n/n ) - Bizley. Cf. A274244.
Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/9)*binomial(9*n-9*k, 2*n-2*k)*a(k) for n >= 1. (End)
The sequence defined by b(n) := [x^n] A(x)^n begins [1, 4, 372, 39298, 4384884, 504464254, 59183637186, 7038517648243, ...] and conjecturally satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 11 (checked up to p = 101). - Peter Bala, Sep 14 2021
a(n) ~ c * 3^(18*n) / (n^(3/2) * 2^(2*n) * 7^(7*n)), where c = 0.0389180896257538883301359279112039841187646397413254619045749515282872957... - Vaclav Kotesovec, Sep 16 2021
Comments