cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300389 The number of paths of length 13*n from the origin to the line y = 2*x/11 with unit East and North steps that stay below the line or touch it.

Original entry on oeis.org

1, 6, 593, 87143, 15149546, 2891511017, 585739005066, 123655688922720, 26908765569970320, 5993187329634638043, 1359541058523676017369, 313029501692713279534165, 72965556751635426636633639, 17184586991024424745328563477, 4083065013894860643162116395527
Offset: 0

Views

Author

Bryan T. Ek, Mar 04 2018

Keywords

Comments

Equivalent to nonnegative walks from (0,0) to (13*n,0) with step set [1,2], [1,-11].

Examples

			For n=1, the possible walks are EEEEEEEEEEENN, EEEEEEEEEENEN, EEEEEEEEENEEN, EEEEEEEENEEEN, EEEEEEEENEEEEN, EEEEEEENEEEEN.
		

Crossrefs

Programs

  • Mathematica
    m = 15;
    Exp[Sum[(1/13) Binomial[13n, 2n] x^n/n, {n, 1, m}]] + O[x]^m // CoefficientList[#, x]& (* Jean-François Alcover, Feb 26 2020, after Peter Bala *)

Formula

G.f. satisfies: f = f^78*t^6 + 5*f^67*t^5 - f^66*t^5 + 6*f^65*t^5 + 10*f^56*t^4 - 4*f^55*t^4 + 20*f^54*t^4 - 5*f^53*t^4 + 15*f^52*t^4 + 10*f^45*t^3 - 6*f^44*t^3 + 24*f^43*t^3 - 12*f^42*t^3 + 30*f^41*t^3 - 10*f^40*t^3 + 20*f^39*t^3 + 5*f^34*t^2 - 4*f^33*t^2 + 12*f^32*t^2 - 9*f^31*t^2 + 18*f^30*t^2 - 12*f^29*t^2 + 20*f^28*t^2 - 10*f^27*t^2 + 15*f^26*t^2 + f^23*t - f^22*t + 2*f^21*t - 2*f^20*t + 3*f^19*t - 3*f^18*t + 4*f^17*t - 4*f^16*t + 5*f^15*t - 5*f^14*t + 6*f^13*t + 1.
From Peter Bala, Jan 03 2019: (Start)
O.g.f.: A(x) = exp( Sum_{n >= 1} (1/13)*binomial(13*n, 2*n)*x^n/n ) - Bizley.
Recurrence: a(0) = 1 and a(n) = (1/n) * Sum_{k = 0..n-1} (1/13)*binomial(13*n-13*k, 2*n-2*k)*a(k) for n >= 1. (End)
The sequence defined by b(n) := [x^n] A(x)^n begins [1, 6, 1222, 282993, 69239846, 17468997381, 4494716943847, 1172353182893367, ...] and conjecturally satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 5 except for p = 11 and p = 13 (checked up to p = 101). - Peter Bala, Sep 14 2021
a(n) ~ c * 13^(13*n) / (n^(3/2) * 2^(2*n) * 11^(11*n)), where c = 0.0250562444901910770802983936320823301923793538303930752981380507191770309... - Vaclav Kotesovec, Sep 16 2021