cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300415 Expansion of Product_{k>=2} (1 + x^k)/(1 - x^k).

Original entry on oeis.org

1, 0, 2, 2, 4, 6, 10, 14, 22, 32, 46, 66, 94, 130, 182, 250, 340, 462, 622, 830, 1106, 1462, 1922, 2518, 3282, 4256, 5502, 7082, 9078, 11602, 14774, 18746, 23722, 29922, 37630, 47202, 59044, 73662, 91682, 113830, 140994, 174262, 214906, 264462, 324802, 398110, 487018, 594694
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Comments

Convolution of the sequences A002865 and A025147.
Also number of overpartitions of n without a 1. - George Beck, Jan 25 2021

Crossrefs

Programs

  • Maple
    g:= (1-x)/((1+x)*JacobiTheta4(0,x)):
    S:=series(g,x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Mar 05 2018
  • Mathematica
    nmax = 47; CoefficientList[Series[Product[(1 + x^k)/(1 - x^k), {k, 2, nmax}], {x, 0, nmax}], x]
    nmax = 47; CoefficientList[Series[(1 - x)/((1 + x) EllipticTheta[4, 0, x]), {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 + x^k)/(1 - x^k).
G.f.: (1 - x)/((1 + x)*theta_4(x)), where theta_4() is the Jacobi theta function.
a(n) ~ Pi * exp(Pi*sqrt(n)) / (32*n^(3/2)). - Vaclav Kotesovec, Mar 05 2018