A352047 Sum of the divisor complements of the odd proper divisors of n.
0, 2, 3, 4, 5, 8, 7, 8, 12, 12, 11, 16, 13, 16, 23, 16, 17, 26, 19, 24, 31, 24, 23, 32, 30, 28, 39, 32, 29, 48, 31, 32, 47, 36, 47, 52, 37, 40, 55, 48, 41, 64, 43, 48, 77, 48, 47, 64, 56, 62, 71, 56, 53, 80, 71, 64, 79, 60, 59, 96, 61, 64, 103, 64, 83, 96, 67, 72, 95, 96, 71, 104
Offset: 1
Examples
a(10) = 12; a(10) = 10 * Sum_{d|10, d<10, d odd} 1 / d = 10 * (1/1 + 1/5) = 12.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
A352047 := proc(n) local a,d ; a := 0 ; for d in numtheory[divisors](n) do if type(d,'odd') and d < n then a := a+n/d ; end if; end do: a ; end proc: seq(A352047(n),n=1..30) ; # R. J. Mathar, Mar 09 2022
-
Mathematica
Table[n DivisorSum[n, 1/# &, # < n && OddQ[#] &], {n, 72}] (* Michael De Vlieger, Mar 02 2022 *) a[n_] := DivisorSigma[-1, n / 2^IntegerExponent[n, 2]] * n - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
-
PARI
a(n) = n*sumdiv(n, d, if ((d%2) && (d
Michel Marcus, Mar 02 2022 -
PARI
a(n) = n * sigma(n >> valuation(n, 2), -1) - n % 2; \\ Amiram Eldar, Oct 13 2023
-
Python
from math import prod from sympy import factorint def A352047(n): return prod(p**e if p == 2 else (p**(e+1)-1)//(p-1) for p, e in factorint(n).items()) - n % 2 # Chai Wah Wu, Mar 02 2022
Formula
a(n) = n * Sum_{d|n, d
a(2n+1) = A000593(2n+1) - 1. - Chai Wah Wu, Mar 01 2022
G.f.: Sum_{k>=2} k * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
exp( 2*Sum_{n>=1} a(n)*x^n/n ) is the g.f. of A300415. - Paul D. Hanna, May 15 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^2 / 2, where c = Pi^2/8 = 1.23370055... (A111003). (End)
A300413 Expansion of Product_{k>=1} (1 + x^prime(k))/(1 - x^prime(k)).
1, 0, 2, 2, 2, 6, 4, 10, 10, 14, 20, 22, 32, 38, 48, 60, 74, 90, 112, 134, 164, 196, 236, 282, 336, 398, 472, 554, 652, 766, 890, 1046, 1206, 1408, 1624, 1876, 2168, 2486, 2860, 3276, 3744, 4282, 4878, 5554, 6316, 7160, 8124, 9186, 10388, 11722, 13216, 14876, 16732, 18794, 21084, 23636
Offset: 0
Keywords
Links
Crossrefs
Programs
-
Mathematica
nmax = 55; CoefficientList[Series[Product[(1 + x^Prime[k])/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]
Formula
log(a(n)) ~ Pi*sqrt(2*n/log(n/3)) * (1/3 + 2*sqrt(log(n/3) / log(2*n/3)) / 3). - Vaclav Kotesovec, Jan 12 2021
A300414 Expansion of Product_{k>=2} (1 + x^Fibonacci(k))/(1 - x^Fibonacci(k)).
1, 2, 4, 8, 12, 20, 30, 42, 62, 84, 114, 154, 198, 260, 332, 418, 530, 654, 810, 994, 1202, 1462, 1752, 2094, 2500, 2948, 3486, 4092, 4776, 5582, 6468, 7490, 8650, 9928, 11406, 13036, 14862, 16934, 19196, 21758, 24592, 27706, 31216, 35038, 39284, 43990, 49100, 54798, 61008, 67798
Offset: 0
Keywords
Crossrefs
Programs
-
Mathematica
nmax = 49; CoefficientList[Series[Product[(1 + x^Fibonacci[k])/(1 - x^Fibonacci[k]), {k, 2, 20}], {x, 0, nmax}], x]
A319672 a(n) = [x^n] Product_{k>=2} ((1 + x^k)/(1 - x^k))^n.
1, 0, 4, 6, 40, 110, 520, 1778, 7568, 28320, 116224, 453046, 1837600, 7306234, 29565848, 118786526, 481192480, 1945153838, 7895908852, 32046260282, 130370798320, 530650047710, 2163191769336, 8824509524082, 36037768384832, 147277910160160, 602398740105712, 2465582764631334
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^n , {k, 2, n}], {x, 0, n}], {n, 0, 27}] Table[SeriesCoefficient[((1 - x)/((1 + x) EllipticTheta[4, 0, x]))^n, {x, 0, n}], {n, 0, 27}] Table[SeriesCoefficient[Exp[n Sum[(DivisorSigma[1, 2 k] - DivisorSigma[1, k] + (-1)^k - 1) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 27}]
Formula
a(n) = [x^n] ((1 - x)/((1 + x)*theta_4(x)))^n, where theta_4() is the Jacobi theta function.
a(n) = [x^n] exp(n*Sum_{k>=1} (sigma(2*k) - sigma(k) + (-1)^k - 1)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 4.16958962845360844086951404338054148667024... and c = 0.23380422010834870751549442953816486722... - Vaclav Kotesovec, Oct 06 2018
A308654 The overpartition triangle: T(n,k) is the number of overpartitions of n with exactly k positive integer parts, 0 <= k <= n.
1, 0, 2, 0, 2, 2, 0, 2, 4, 2, 0, 2, 6, 4, 2, 0, 2, 8, 8, 4, 2, 0, 2, 10, 14, 8, 4, 2, 0, 2, 12, 20, 16, 8, 4, 2, 0, 2, 14, 28, 26, 16, 8, 4, 2, 0, 2, 16, 38, 40, 28, 16, 8, 4, 2, 0, 2, 18, 48, 60, 46, 28, 16, 8, 4, 2, 0, 2, 20, 60, 84, 72, 48, 28, 16, 8, 4, 2
Offset: 0
Comments
Examples
T(5,3) = 8 and counts the overpartitions 3,1,1; 3',1,1; 3,1',1; 3',1',1; 2,2,1; 2',2,1; 2,2,1' and 2',2,1'. T(16,5) = 404 = T(11,5) + 2*( T(11,4) + T(11,3) + T(11,2) + T(11,1)) = 72 + 2*(84 + 60 + 20 + 2) = 404. T(16, 5) = T(15,4) + T(11,4) + T(10,4) + T(6,4) + T(5,4) = 248 + 84 + 60 + 8 + 4 = 404. T(9,1) + T(8,2) + T(7,3) + T(6,4) + T(6,5)= 2 + 14 + 20 + 8 + 2 = 46 =A300415(10). Triangle: T(n,k) begins: 1; 0, 2; 0, 2, 2; 0, 2, 4, 2; 0, 2, 6, 4, 2; 0, 2, 8, 8, 4, 2; 0, 2, 10, 14, 8, 4, 2; 0, 2, 12, 20, 16, 8, 4, 2; 0, 2, 14, 28, 26, 16, 8, 4, 2; 0, 2, 16, 38, 40, 28, 16, 8, 4, 2; 0, 2, 18, 48, 60, 46, 28, 16, 8, 4, 2; ...
Crossrefs
Programs
-
Maple
b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0, add( expand(`if`(j>0, 2*x^j, 1)*b(n-i*j, i-1)), j=0..n/i))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)): seq(T(n), n=0..14); # Alois P. Heinz, Jun 15 2019
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Expand[If[j > 0, 2*x^j, 1]*b[n - i*j, i - 1]], {j, 0, n/i}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, n]]; T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Dec 10 2019, after Alois P. Heinz *)
Formula
Sum_{k=0..n} T(n,k) = A015128(n), the number of overpartitions of n.
If k > n, T(n,k) = 0.
If n >= k > n/2, T(n,k) = 2*A015128(n-k).
Conjecture: T(n,k) = T(n-k, k) + 2*(T(n-k, k-1) + ... + T(n-k, 1)).
Conjecture: T(n,k) = T(n-1, k-1) + T(n-k, k-1) + T(n-k-1, k-1) + T(n-2k, k-1) + T(n-2k-1) + ...
Conjecture: T(n,1) + T(n-1,2) + ... + T(n-floor(n/2),floor(n/2)) = A300415(n+1).
T(n,2) = 2n - 2.
Conjecture: g.f. T(n,k) = 2*(1+x)(1+x^2)...(1+x^(k-1))/((1-x)...(1-x^k)).
Sum_{k=1..n} k * T(n,k) = A235792(n). - Alois P. Heinz, Jun 15 2019
Comments