cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A352047 Sum of the divisor complements of the odd proper divisors of n.

Original entry on oeis.org

0, 2, 3, 4, 5, 8, 7, 8, 12, 12, 11, 16, 13, 16, 23, 16, 17, 26, 19, 24, 31, 24, 23, 32, 30, 28, 39, 32, 29, 48, 31, 32, 47, 36, 47, 52, 37, 40, 55, 48, 41, 64, 43, 48, 77, 48, 47, 64, 56, 62, 71, 56, 53, 80, 71, 64, 79, 60, 59, 96, 61, 64, 103, 64, 83, 96, 67, 72, 95, 96, 71, 104
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 01 2022

Keywords

Examples

			a(10) = 12; a(10) = 10 * Sum_{d|10, d<10, d odd} 1 / d = 10 * (1/1 + 1/5) = 12.
		

Crossrefs

Sum of the k-th powers of the divisor complements of the odd proper divisors of n for k=0..10: A091954 (k=0), this sequence (k=1), A352048 (k=2), A352049 (k=3), A352050 (k=4), A352051 (k=5), A352052 (k=6), A352053 (k=7), A352054 (k=8), A352055 (k=9), A352056 (k=10).

Programs

  • Maple
    A352047 := proc(n)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if type(d,'odd') and d < n then
                a := a+n/d ;
            end if;
        end do:
        a ;
    end proc:
    seq(A352047(n),n=1..30) ; # R. J. Mathar, Mar 09 2022
  • Mathematica
    Table[n DivisorSum[n, 1/# &, # < n && OddQ[#] &], {n, 72}] (* Michael De Vlieger, Mar 02 2022 *)
    a[n_] := DivisorSigma[-1, n / 2^IntegerExponent[n, 2]] * n - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *)
  • PARI
    a(n) = n*sumdiv(n, d, if ((d%2) && (dMichel Marcus, Mar 02 2022
    
  • PARI
    a(n) = n * sigma(n >> valuation(n, 2), -1) - n % 2; \\ Amiram Eldar, Oct 13 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A352047(n): return prod(p**e if p == 2 else (p**(e+1)-1)//(p-1) for p, e in factorint(n).items()) - n % 2 # Chai Wah Wu, Mar 02 2022

Formula

a(n) = n * Sum_{d|n, d
a(2n+1) = A000593(2n+1) - 1. - Chai Wah Wu, Mar 01 2022
G.f.: Sum_{k>=2} k * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 14 2023
exp( 2*Sum_{n>=1} a(n)*x^n/n ) is the g.f. of A300415. - Paul D. Hanna, May 15 2023
From Amiram Eldar, Oct 13 2023: (Start)
a(n) = A000593(n) * A006519(n) - A000035(n).
Sum_{k=1..n} a(k) = c * n^2 / 2, where c = Pi^2/8 = 1.23370055... (A111003). (End)

A300413 Expansion of Product_{k>=1} (1 + x^prime(k))/(1 - x^prime(k)).

Original entry on oeis.org

1, 0, 2, 2, 2, 6, 4, 10, 10, 14, 20, 22, 32, 38, 48, 60, 74, 90, 112, 134, 164, 196, 236, 282, 336, 398, 472, 554, 652, 766, 890, 1046, 1206, 1408, 1624, 1876, 2168, 2486, 2860, 3276, 3744, 4282, 4878, 5554, 6316, 7160, 8124, 9186, 10388, 11722, 13216, 14876, 16732, 18794, 21084, 23636
Offset: 0

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Comments

Convolution of the sequences A000586 and A000607.

Programs

  • Mathematica
    nmax = 55; CoefficientList[Series[Product[(1 + x^Prime[k])/(1 - x^Prime[k]), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A000040(k))/(1 - x^A000040(k)).
log(a(n)) ~ Pi*sqrt(2*n/log(n/3)) * (1/3 + 2*sqrt(log(n/3) / log(2*n/3)) / 3). - Vaclav Kotesovec, Jan 12 2021

A300414 Expansion of Product_{k>=2} (1 + x^Fibonacci(k))/(1 - x^Fibonacci(k)).

Original entry on oeis.org

1, 2, 4, 8, 12, 20, 30, 42, 62, 84, 114, 154, 198, 260, 332, 418, 530, 654, 810, 994, 1202, 1462, 1752, 2094, 2500, 2948, 3486, 4092, 4776, 5582, 6468, 7490, 8650, 9928, 11406, 13036, 14862, 16934, 19196, 21758, 24592, 27706, 31216, 35038, 39284, 43990, 49100, 54798, 61008, 67798
Offset: 0

Author

Ilya Gutkovskiy, Mar 05 2018

Keywords

Comments

Convolution of the sequences A000119 and A003107.

Programs

  • Mathematica
    nmax = 49; CoefficientList[Series[Product[(1 + x^Fibonacci[k])/(1 - x^Fibonacci[k]), {k, 2, 20}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=2} (1 + x^A000045(k))/(1 - x^A000045(k)).

A319672 a(n) = [x^n] Product_{k>=2} ((1 + x^k)/(1 - x^k))^n.

Original entry on oeis.org

1, 0, 4, 6, 40, 110, 520, 1778, 7568, 28320, 116224, 453046, 1837600, 7306234, 29565848, 118786526, 481192480, 1945153838, 7895908852, 32046260282, 130370798320, 530650047710, 2163191769336, 8824509524082, 36037768384832, 147277910160160, 602398740105712, 2465582764631334
Offset: 0

Author

Ilya Gutkovskiy, Sep 25 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[((1 + x^k)/(1 - x^k))^n , {k, 2, n}], {x, 0, n}], {n, 0, 27}]
    Table[SeriesCoefficient[((1 - x)/((1 + x) EllipticTheta[4, 0, x]))^n, {x, 0, n}], {n, 0, 27}]
    Table[SeriesCoefficient[Exp[n Sum[(DivisorSigma[1, 2 k] - DivisorSigma[1, k] + (-1)^k - 1) x^k/k, {k, 1, n}]], {x, 0, n}], {n, 0, 27}]

Formula

a(n) = [x^n] ((1 - x)/((1 + x)*theta_4(x)))^n, where theta_4() is the Jacobi theta function.
a(n) = [x^n] exp(n*Sum_{k>=1} (sigma(2*k) - sigma(k) + (-1)^k - 1)*x^k/k).
a(n) ~ c * d^n / sqrt(n), where d = 4.16958962845360844086951404338054148667024... and c = 0.23380422010834870751549442953816486722... - Vaclav Kotesovec, Oct 06 2018

A308654 The overpartition triangle: T(n,k) is the number of overpartitions of n with exactly k positive integer parts, 0 <= k <= n.

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 0, 2, 4, 2, 0, 2, 6, 4, 2, 0, 2, 8, 8, 4, 2, 0, 2, 10, 14, 8, 4, 2, 0, 2, 12, 20, 16, 8, 4, 2, 0, 2, 14, 28, 26, 16, 8, 4, 2, 0, 2, 16, 38, 40, 28, 16, 8, 4, 2, 0, 2, 18, 48, 60, 46, 28, 16, 8, 4, 2, 0, 2, 20, 60, 84, 72, 48, 28, 16, 8, 4, 2
Offset: 0

Author

Gregory L. Simay, Jun 14 2019

Keywords

Comments

T(n,0) = A000007(n).
T(n,1) = A040000(n) for n > 0.
T(n,2) = A005843(n-1).
T(n,3) = 2*A007980(n-3).
T(n,4) = 2*A061866(n-1).
T(n,5) = 2*A091773(n-5).
Conjecture: T(n,k) = 2*(the associated Poincaré series). If T(n,1) were 1 for n>0, then T(n, k>1) would be a Poincaré series.

Examples

			T(5,3) = 8 and counts the overpartitions 3,1,1; 3',1,1; 3,1',1; 3',1',1; 2,2,1; 2',2,1; 2,2,1' and 2',2,1'.
T(16,5) = 404 = T(11,5) + 2*( T(11,4) + T(11,3) + T(11,2) + T(11,1)) = 72 + 2*(84 + 60 + 20 + 2) = 404.
T(16, 5) = T(15,4) + T(11,4) + T(10,4) + T(6,4) + T(5,4) = 248 + 84 + 60 + 8 + 4 = 404.
T(9,1) + T(8,2) + T(7,3) + T(6,4) + T(6,5)= 2 + 14 + 20 + 8 + 2 = 46 =A300415(10).
Triangle: T(n,k) begins:
  1;
  0, 2;
  0, 2,  2;
  0, 2,  4,  2;
  0, 2,  6,  4,  2;
  0, 2,  8,  8,  4,  2;
  0, 2, 10, 14,  8,  4,  2;
  0, 2, 12, 20, 16,  8,  4,  2;
  0, 2, 14, 28, 26, 16,  8,  4, 2;
  0, 2, 16, 38, 40, 28, 16,  8, 4, 2;
  0, 2, 18, 48, 60, 46, 28, 16, 8, 4, 2;
  ...
		

Crossrefs

Row sums give A015128.
Main diagonal T(n,n) gives A040000.

Programs

  • Maple
    b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          expand(`if`(j>0, 2*x^j, 1)*b(n-i*j, i-1)), j=0..n/i)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2)):
    seq(T(n), n=0..14);  # Alois P. Heinz, Jun 15 2019
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Expand[If[j > 0, 2*x^j, 1]*b[n - i*j, i - 1]], {j, 0, n/i}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, n]];
    T /@ Range[0, 14] // Flatten (* Jean-François Alcover, Dec 10 2019, after Alois P. Heinz *)

Formula

Sum_{k=0..n} T(n,k) = A015128(n), the number of overpartitions of n.
If k > n, T(n,k) = 0.
If n >= k > n/2, T(n,k) = 2*A015128(n-k).
Conjecture: T(n,k) = T(n-k, k) + 2*(T(n-k, k-1) + ... + T(n-k, 1)).
Conjecture: T(n,k) = T(n-1, k-1) + T(n-k, k-1) + T(n-k-1, k-1) + T(n-2k, k-1) + T(n-2k-1) + ...
Conjecture: T(n,1) + T(n-1,2) + ... + T(n-floor(n/2),floor(n/2)) = A300415(n+1).
T(n,2) = 2n - 2.
Conjecture: g.f. T(n,k) = 2*(1+x)(1+x^2)...(1+x^(k-1))/((1-x)...(1-x^k)).
Sum_{k=1..n} k * T(n,k) = A235792(n). - Alois P. Heinz, Jun 15 2019
Showing 1-5 of 5 results.