cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300447 Numbers x such that sigma(x) = sigma(y), with x<>y, where y is the 10's complement mod 10 of the digits of x.

Original entry on oeis.org

54, 56, 513, 520, 546, 564, 580, 597, 4845, 5130, 5223, 5454, 5656, 5887, 5970, 6265, 44226, 46365, 48450, 50260, 50840, 51300, 52230, 52520, 53768, 57342, 58580, 58870, 59700, 62650, 64745, 66884, 463650, 477972, 484500, 489132, 489632, 493752, 501536, 503274
Offset: 1

Views

Author

Paolo P. Lava, Mar 06 2018

Keywords

Examples

			sigma(54) = sigma(56) = 120;
sigma(513) = sigma(597) = 800;
sigma(477972) = sigma(633138) = 1415232.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n;
    for n from 1 to q do a:=convert(n,base,10);
    for k from 1 to nops(a) do a[k]:=(10-a[k]) mod 10; od; b:=0;
    for k from 1 to nops(a) do b:=b*10+a[nops(a)-k+1]; od;
    if b<>n and sigma(b)=sigma(n) then print(n); fi; od; end: P(10^6);
  • Mathematica
    Select[Range[10^6], Apply[And[#1 != #2, DivisorSigma[1, #1] == DivisorSigma[1, #2]] &, {#, FromDigits[IntegerDigits[#] /. d_?Positive :> 10 - d]}] &] (* Michael De Vlieger, Mar 09 2018 *)
  • PARI
    isok(x) = {my(dx = digits(x), dy = vector(#dx, k, (10-dx[k]) % 10), y = fromdigits(dy)); (x != y) && (sigma(x) == sigma(y));} \\ Michel Marcus, Mar 07 2018