cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300509 a(n) is the number of numbers in the interval [2^(n-1), 2^n-1] that have exactly n divisors.

Original entry on oeis.org

1, 2, 1, 4, 1, 6, 1, 25, 3, 10, 1, 212, 1, 27, 8, 3625, 1, 1291, 1, 7687, 18, 265, 1, 629369, 4, 885, 695, 365370, 1, 685360, 1, 178723829, 131, 10782, 12, 311470930, 1, 38692, 413, 6162245368, 1, 381481569, 1, 1067082439, 139407, 513855, 1
Offset: 1

Views

Author

Jon E. Schoenfield, May 25 2018

Keywords

Comments

Number of n-digit binary numbers with exactly n divisors.
If p is an odd prime, then the only p-digit binary number having exactly p divisors is 2^(p-1), so a(p) = 1.
Only squares have an odd number of divisors, so for odd values of n, a(n) is the number of numbers in the interval [ceiling(sqrt(2^(n-1))), floor(sqrt(2^n-1))] whose squares have exactly n divisors. The next few odd-indexed terms are a(41) = 1, a(43) = 1, a(45) = 139407, a(47) = 1, and a(49) = 8. - Jon E. Schoenfield, May 26 2018

Examples

			a(1) = 1 because the only number in the interval [2^(1-1), 2^1 - 1] = [1, 1] having exactly 1 divisor is 1.
a(2) = 2 because each of the two numbers in the interval [2^(2-1), 2^2 - 1] = [2, 3] has exactly 2 divisors.
a(8) = 25 because the numbers in the interval [2^(8-1), 2^8 - 1] = [128, 255] having exactly 8 divisors are the 1 number of the form p^7 {i.e., 2^7 = 128}, the 8 numbers of the form p^3 * q {135, 136, 152, 184, 189, 232, 248, 250}, and the 16 numbers of the form p*q*r {130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 222, 230, 231, 238, 246, 255}; 1 + 8 + 16 = 25.
		

Crossrefs

Main diagonal of A346730.

Programs

  • PARI
    a(n) = sum(k=2^(n-1), 2^n-1, numdiv(k)==n); \\ Michel Marcus, May 26 2018

Extensions

a(26)-a(38) from Giovanni Resta, May 26 2018
a(39) from Jon E. Schoenfield, May 26 2018
a(40)-a(41) from Giovanni Resta, May 27 2018
a(42)-a(47) from Jon E. Schoenfield, May 27 2018