A300515 Expansion of e.g.f. log(Sum_{k>=0} q(k)*x^k/k!), where q(k) = number of partitions of k into distinct parts (A000009).
0, 1, 0, 1, -3, 7, -24, 130, -748, 4446, -30694, 245586, -2131621, 19850237, -201363613, 2214638141, -26037523804, 325653856386, -4331545709166, 61069238694738, -908488414975896, 14220161323121232, -233746798117055047, 4025924893291859919, -72487584601341680720
Offset: 0
Keywords
Examples
E.g.f.: A(x) = x/1! + x^3/3! - 3*x^4/4! + 7*x^5/5! - 24*x^6/6! + 130*x^7/7! - 748*x^8/8! + ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..470
- N. J. A. Sloane, Transforms
- Index entries for related partition-counting sequences
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add( `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) end: a:= proc(n) option remember; (t-> `if`(n=0, 0, t(n)-add( j*a(j)*binomial(n, j)*t(n-j), j=1..n-1)/n))(b) end: seq(a(n), n=0..30); # Alois P. Heinz, Mar 07 2018
-
Mathematica
nmax = 24; CoefficientList[Series[Log[Sum[PartitionsQ[k] x^k/k!, {k, 0, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = PartitionsQ[n] - Sum[k Binomial[n, k] PartitionsQ[n - k] a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 24}]
Formula
E.g.f.: log(Sum_{k>=0} A000009(k)*x^k/k!).
Comments