cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300522 a(n) = (5*n + 3)*(5*n + 4)*(5*n + 5)/6.

Original entry on oeis.org

10, 120, 455, 1140, 2300, 4060, 6545, 9880, 14190, 19600, 26235, 34220, 43680, 54740, 67525, 82160, 98770, 117480, 138415, 161700, 187460, 215820, 246905, 280840, 317750, 357760, 400995, 447580, 497640, 551300, 608685, 669920, 735130, 804440, 877975, 955860, 1038220, 1125180
Offset: 0

Views

Author

Bruno Berselli, Mar 08 2018

Keywords

Comments

Al-Saedi has discovered that p(10*n+2,4) + p(10*n+3,4) + p(10*n+4,4) == 0 (mod 5), where p(m,k) denote the number of partitions of m into at most k parts [see Theorem 3.6, formula 24, in Links and References sections].
Hirschhorn showed that p(10*n+2,4) + p(10*n+3,4) + p(10*n+4,4) = (5*n+3)*(5*n+4)*(5*n+5)/6 [see References section: paragraph 3, "Proofs of (1.5)-(1.8)"].
The sequence binomial(5*m,3), m>=0, begins 0, 0, 0, 10, 120, 455, 1140, 2300, 4060, ... - N. J. A. Sloane, Jun 13 2020

References

  • Ali H. Al-Saedi, Using Periodicity to Obtain Partition Congruences, Journal of Number Theory, Vol. 178, 2017, pages 158-178.
  • Michael D. Hirschhorn, Congruences modulo 5 for partitions into at most four parts, The Fibonacci Quarterly, Vol. 56, Number 1, 2018, pages 34-37.

Crossrefs

Subsequence of A160790.

Programs

  • GAP
    List([0..40], n -> (5*n+3)*(5*n+4)*(5*n+5)/6);
    
  • Julia
    [div((5*n+3)*(5*n+4)*(5*n+5), 6) for n in 0:40] |> println
  • Magma
    [(5*n+3)*(5*n+4)*(5*n+5)/6: n in [0..40]];
    
  • Mathematica
    Table[(5 n + 3) (5 n + 4) (5 n + 5)/6, {n, 0, 40}]
  • Maxima
    makelist((5*n+3)*(5*n+4)*(5*n+5)/6, n, 0, 40);
    
  • PARI
    vector(40, n, n--; (5*n+3)*(5*n+4)*(5*n+5)/6)
    
  • Python
    [(5*n+3)*(5*n+4)*(5*n+5)/6 for n in range(40)]
    
  • Sage
    [(5*n+3)*(5*n+4)*(5*n+5)/6 for n in (0..40)]
    

Formula

O.g.f.: 5*(2 + 16*x + 7*x^2)/(1 - x)^4 [formula 4.1 in Hirschhorn's paper].
E.g.f.: 5*(12 + 132*x + 135*x^2 + 25*x^3)*exp(x)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(-n) = -A300523(n-2).
Sum_{n>=0} 1/a(n) = 3*sqrt(5+2/sqrt(5))*Pi/10 - 9*sqrt(5)*log(phi)/10 - 3*log(5)/4. - Amiram Eldar, Jan 04 2022