cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A300523 a(n) = (5*n + 5)*(5*n + 6)*(5*n + 7)/6.

Original entry on oeis.org

35, 220, 680, 1540, 2925, 4960, 7770, 11480, 16215, 22100, 29260, 37820, 47905, 59640, 73150, 88560, 105995, 125580, 147440, 171700, 198485, 227920, 260130, 295240, 333375, 374660, 419220, 467180, 518665, 573800, 632710, 695520, 762355, 833340, 908600, 988260, 1072445
Offset: 0

Views

Author

Bruno Berselli, Mar 08 2018

Keywords

Comments

Al-Saedi has discovered that p(10*n+6,4) + p(10*n+7,4) + p(10*n+8,4) == 0 (mod 5), where p(m,k) denote the number of partitions of m into at most k parts [see Theorem 3.6, formula 23, in Links and References sections].
Hirschhorn showed that p(10*n+6,4) + p(10*n+7,4) + p(10*n+8,4) = (5*n+5)*(5*n+6)*(5*n+7)/6 [see References section: paragraph 3, "Proofs of (1.5)-(1.8)"].

References

  • Ali H. Al-Saedi, Using Periodicity to Obtain Partition Congruences, Journal of Number Theory, Vol. 178, 2017, pages 158-178.
  • Michael D. Hirschhorn, Congruences modulo 5 for partitions into at most four parts, The Fibonacci Quarterly, Vol. 56, Number 1, 2018, pages 34-37.

Crossrefs

Subsequence of A160790.

Programs

  • GAP
    List([0..40], n -> (5*n+5)*(5*n+6)*(5*n+7)/6);
    
  • Julia
    [div((5*n+5)*(5*n+6)*(5*n+7), 6) for n in 0:40] |> println
  • Magma
    [(5*n+5)*(5*n+6)*(5*n+7)/6: n in [0..40]];
    
  • Mathematica
    Table[(5 n + 5) (5 n + 6) (5 n + 7)/6, {n, 0, 40}]
    Table[Times@@(5n+{5,6,7})/6,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{35,220,680,1540},40] (* Harvey P. Dale, Oct 22 2019 *)
  • Maxima
    makelist((5*n+5)*(5*n+6)*(5*n+7)/6, n, 0, 40);
    
  • PARI
    vector(40, n, n--; (5*n+5)*(5*n+6)*(5*n+7)/6)
    
  • Python
    [(5*n+5)*(5*n+6)*(5*n+7)/6 for n in range(40)]
    
  • Sage
    [(5*n+5)*(5*n+6)*(5*n+7)/6 for n in (0..40)]
    

Formula

O.g.f.: 5*(7 + 16*x + 2*x^2)/(1 - x)^4 [formula 4.2 in Hirschhorn's paper].
E.g.f.: 5*(42 + 222*x + 165*x^2 + 25*x^3)*exp(x)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(-n) = -A300522(n-2).

A300254 a(n) = 25*(n + 1)*(4*n + 3)*(5*n + 4)/3.

Original entry on oeis.org

100, 1050, 3850, 9500, 19000, 33350, 53550, 80600, 115500, 159250, 212850, 277300, 353600, 442750, 545750, 663600, 797300, 947850, 1116250, 1303500, 1510600, 1738550, 1988350, 2261000, 2557500, 2878850, 3226050, 3600100, 4002000, 4432750, 4893350, 5384800, 5908100, 6464250
Offset: 0

Views

Author

Bruno Berselli, Mar 12 2018

Keywords

Comments

Hirschhorn has discovered that p(20*n+11,4) + p(20*n+12,4) + p(20*n+13,4) = 25*(n + 1)*(4*n + 3)*(5*n + 4)/3, where p(m,k) denote the number of partitions of m into at most k parts. Therefore, p(20*n+11,4) + p(20*n+12,4) + p(20*n+13,4) == 0 (mod 50) [see Hirschhorn's paper in References section].
a(n) == 0 (mod 3) if n is of the form 2*h + 3*floor(h/3 + 2/3) + 1.
a(n) == 0 (mod 7) if n is a member of A047278.

References

  • Michael D. Hirschhorn, Congruences modulo 5 for partitions into at most four parts, The Fibonacci Quarterly, Vol. 56, Number 1, 2018, pages 32-37 [the equation 1.7 contains a typo].

Crossrefs

Subsequence of A014112, A212964, A228958, A268684.

Programs

  • GAP
    List([0..40], n -> 25*(n+1)*(4*n+3)*(5*n+4)/3);
    
  • Julia
    [div(25*(n+1)*(4*n+3)*(5*n+4), 3) for n in 0:40] |> println
    
  • Magma
    [25*(n+1)*(4*n+3)*(5*n+4)/3: n in [0..40]];
    
  • Mathematica
    Table[25 (n + 1) (4 n + 3) (5 n + 4)/3, {n, 0, 40}]
  • Maxima
    makelist(25*(n+1)*(4*n+3)*(5*n+4)/3, n, 0, 40);
    
  • PARI
    vector(40, n, n--; 25*(n+1)*(4*n+3)*(5*n+4)/3)
    
  • PARI
    Vec(50*(2 + 13*x + 5*x^2) / (1 - x)^4 + O(x^60)) \\ Colin Barker, Mar 13 2018
  • Python
    [25*(n+1)*(4*n+3)*(5*n+4)/3 for n in range(40)]
    
  • Sage
    [25*(n+1)*(4*n+3)*(5*n+4)/3 for n in (0..40)]
    

Formula

O.g.f.: 50*(2 + 13*x + 5*x^2)/(1 - x)^4 [formula 4.3 in Hirschhorn's paper].
E.g.f.: 25*(12 + 114*x + 111*x^2 + 20*x^3)*exp(x)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4)
a(n) = A014112(10*n+8) = A212964(10*n+9) = A228958(10*n+8) = A268684(5*n+4).
Showing 1-2 of 2 results.