A300523 a(n) = (5*n + 5)*(5*n + 6)*(5*n + 7)/6.
35, 220, 680, 1540, 2925, 4960, 7770, 11480, 16215, 22100, 29260, 37820, 47905, 59640, 73150, 88560, 105995, 125580, 147440, 171700, 198485, 227920, 260130, 295240, 333375, 374660, 419220, 467180, 518665, 573800, 632710, 695520, 762355, 833340, 908600, 988260, 1072445
Offset: 0
References
- Ali H. Al-Saedi, Using Periodicity to Obtain Partition Congruences, Journal of Number Theory, Vol. 178, 2017, pages 158-178.
- Michael D. Hirschhorn, Congruences modulo 5 for partitions into at most four parts, The Fibonacci Quarterly, Vol. 56, Number 1, 2018, pages 34-37.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Ali H. Al-Saedi, Using Periodicity to Obtain Partition Congruences, arXiv:1609.03633 [math.NT], 2017, pages 12-13.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
GAP
List([0..40], n -> (5*n+5)*(5*n+6)*(5*n+7)/6);
-
Julia
[div((5*n+5)*(5*n+6)*(5*n+7), 6) for n in 0:40] |> println
-
Magma
[(5*n+5)*(5*n+6)*(5*n+7)/6: n in [0..40]];
-
Mathematica
Table[(5 n + 5) (5 n + 6) (5 n + 7)/6, {n, 0, 40}] Table[Times@@(5n+{5,6,7})/6,{n,0,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{35,220,680,1540},40] (* Harvey P. Dale, Oct 22 2019 *)
-
Maxima
makelist((5*n+5)*(5*n+6)*(5*n+7)/6, n, 0, 40);
-
PARI
vector(40, n, n--; (5*n+5)*(5*n+6)*(5*n+7)/6)
-
Python
[(5*n+5)*(5*n+6)*(5*n+7)/6 for n in range(40)]
-
Sage
[(5*n+5)*(5*n+6)*(5*n+7)/6 for n in (0..40)]
Formula
O.g.f.: 5*(7 + 16*x + 2*x^2)/(1 - x)^4 [formula 4.2 in Hirschhorn's paper].
E.g.f.: 5*(42 + 222*x + 165*x^2 + 25*x^3)*exp(x)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(-n) = -A300522(n-2).
Comments