cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A300547 a(n) = [x^n] Product_{d|n} (1 - x^d).

Original entry on oeis.org

1, -1, -1, -1, -1, -1, -2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, -1, -1, -1, 0, -1, -1, -1, -2, -1, -2, -1, -1, -1, -1, -1, -2, -1, -1, -1, 0, -1, -1, -1, -1, -1, -1, -1, -3, -1, -1, -1, -1, -1, -2, -1, -1, -1, -1, -1, -5, -1, -1, -1, -1, -1, -3, -1, -1, -1, -1, -1, 0, -1, -1, -1, -1, -1, -2, -1, 1, -1, -1, -1, -2, -1
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 - Boole[Mod[n, k] == 0] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 85}]
  • PARI
    A300547(n) = { if(!n,return(1)); my(p=1); fordiv(n,d, p *= (1 - 'x^d)); polcoeff(p,n); }; \\ Antti Karttunen, Sep 25 2018

A300549 a(n) = [x^n] Product_{d|n} (1 + x^d)/(1 - x^d).

Original entry on oeis.org

1, 2, 4, 4, 10, 4, 28, 4, 36, 14, 44, 4, 284, 4, 60, 64, 202, 4, 616, 4, 732, 88, 92, 4, 5740, 22, 108, 112, 1404, 4, 10672, 4, 1828, 136, 140, 144, 42622, 4, 156, 160, 22940, 4, 28024, 4, 3420, 3172, 188, 4, 266524, 30, 4344, 208, 4764, 4, 58600, 224, 60204, 232, 236, 4, 3464272, 4, 252, 6052, 27338, 264
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 08 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[(1 + Boole[Mod[n, k] == 0] x^k)/(1 - Boole[Mod[n, k] == 0] x^k), {k, 1, n}], {x, 0, n}], {n, 0, 65}]

Formula

a(n) = 4 if n is a prime (A000040).
Showing 1-2 of 2 results.