cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A300574 Coefficient of x^n in 1/((1-x)(1+x^3)(1-x^5)(1+x^7)(1-x^9)...).

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 1, 0, 2, 3, 2, 0, 2, 4, 4, 0, 1, 4, 6, 2, 1, 4, 8, 4, 2, 4, 10, 6, 2, 3, 12, 10, 4, 2, 13, 14, 8, 2, 14, 18, 12, 2, 14, 22, 18, 3, 14, 26, 26, 6, 14, 29, 34, 10, 14, 32, 44, 16, 14, 34, 56, 26, 16, 34, 67, 38, 20, 34, 78, 52, 26
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2018

Keywords

Comments

By Theorem 1 of Craig, the values a(n) in this list are known to be nonnegative. Combined with Theorem 2 of Seo and Yee, this shows that a(n) = |number of partitions of n into odd parts with an odd index minus the number of partitions of n into odd parts with an even index|. - William Craig, Dec 31 2021

References

  • Seunghyun Seo and Ae Ja Yee, Index of seaweed algebras and integer partitions, Electronic Journal of Combinatorics, 27:1 (2020), #P1.47. See Conjecture 1 and Theorem 2.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/QPochhammer[x, -x^2], {x, 0, 100}], x]
    nmax = 100; CoefficientList[Series[Product[1/((1+x^(4*k-1))*(1-x^(4*k-3))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 04 2019 *)

Formula

O.g.f.: Product_{n >= 0} 1/(1 - (-1)^n x^(2n+1)).
a(n) = Sum (-1)^k where the sum is over all integer partitions of n into odd parts and k is the number of parts not congruent to 1 modulo 4.
a(n) has average order Gamma(1/4) * exp(sqrt(n/3)*Pi/2) / (2^(9/4) * 3^(1/8) * Pi^(3/4) * n^(5/8)). - Vaclav Kotesovec, Jun 04 2019

A193863 Expansion of Product_{n>=0} (1 + q*(-q^2)^n) / (1 - q*(-q^2)^n).

Original entry on oeis.org

1, 2, 2, 0, -2, 0, 4, 4, -2, -6, 0, 8, 4, -8, -8, 8, 14, -4, -18, 0, 24, 8, -28, -20, 28, 34, -24, -48, 16, 64, 0, -76, -18, 88, 44, -96, -78, 96, 116, -88, -160, 68, 208, -32, -252, -16, 296, 84, -332, -170, 354, 272, -360, -392, 344, 528, -296, -672, 216, 824, -96, -976, -72, 1116, 286, -1240, -552, 1336, 876, -1384
Offset: 0

Views

Author

Joerg Arndt, Aug 07 2011

Keywords

Comments

Expansion of E(-q^2, +q) for E(q,x) = Product_{n>=0} ( 1 + x*q^n ) / ( 1 - x*q^n ).
Replacing q by -q in the g.f. gives the inverse of the g.f., whose expansion is obtained by negating every second term.

Examples

			1 + 2*x + 2*x^2 - 2*x^4 + 4*x^6 + 4*x^7 - 2*x^8 - 6*x^9 + 8*x^11 + ...
		

Crossrefs

Cf. A015128 E(+q,+q), A002448 E(+q,-q), A000122 E(-q,+q), A004402 E(-q,-q), A080054 E(+q^2,+q), A108494 E(+q^2,-q), A300574, A300575.

Programs

  • PARI
    N=66; q='q+O('q^N); /* that many terms */
    gf = prod(n=0, N, (1+q*(-q^2)^n)/(1-q*(-q^2)^n) );
    Vec(gf) /* show terms */
    /* Alternative computation of the g.f. using a product form */
    V=[0,-2, 1, 2, 0, -2, -1, 2]; /* note vectors are one-based */
    gf=prod(n=0, N, (1-q^n)^(V[n%8+1]) );
    
  • PARI
    {a(n) = local(A); if( n<0, 0, polcoeff( prod( k=1, n, (1 - x^k + x * O(x^n) )^[ 0, -2, 1, 2, 0, -2, -1, 2][k%8 + 1]), n))} /* Michael Somos, Feb 26 2012 */

Formula

Euler transform of period 8 sequence [ 2, -1, -2, 0, 2, 1, -2, 0, ...]. - Michael Somos, Feb 26 2012
G.f.: prod(n>=0, (1+q*(-q^2)^n)/(1-q*(-q^2)^n) ).
G.f.: sum(n>=0, prod(k=0..n-1, 1+(-q^2)^k )/prod(k=1..n, 1-(-q^2)^k ) * q^n ).
G.f.: sum(n>=0, prod(k=0..n-1, 1+(-q^2)^k)/( prod(k=1..n, 1-(-q^2)^k) * prod(k=0..n-1, 1-q*(-q^2)^k ) ) * q^n * (-q^2)^(n*(n-1)/2) ).
Convolution of A300574 and A300575. - Seiichi Manyama, Nov 22 2019
Showing 1-2 of 2 results.