cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300598 a(n) = A300591(n) / n for n>=1.

Original entry on oeis.org

1, 1, 9, 184, 6105, 285909, 17599855, 1366487208, 130312110537, 14977420657205, 2044343858148526, 327321396575462328, 60816978336055883851, 12988287586752637095951, 3161098207809674432144760, 870056671853543460441640960, 268957112246197632099231284121, 92799365448465489168470692401021, 35538203127994691420731763316052499, 15028828305943284874962308136851532840
Offset: 1

Views

Author

Paul D. Hanna, Mar 09 2018

Keywords

Comments

If G(x) satisfies: [x^n] exp (n^2 * G(x) ) = n^2 * [x^(n-1)] exp( n^2 * G(x) ) for n>=1, then G(x) equals the o.g.f. of A300591.

Crossrefs

Cf. A300591.

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^2)); A[#A] = ((#A-1)^2*V[#A-1] - V[#A])/(#A-1)^2 ); (1/n)*polcoeff( log(Ser(A)), n)}
    for(n=1, 30, print1(a(n), ", "))