A300657 a(n) = Sum_{d|n} sigma(d) mod d.
0, 1, 1, 4, 1, 2, 1, 11, 5, 10, 1, 9, 1, 12, 11, 26, 1, 9, 1, 15, 13, 16, 1, 28, 7, 18, 18, 15, 1, 32, 1, 57, 17, 22, 15, 35, 1, 24, 19, 32, 1, 36, 1, 59, 48, 28, 1, 71, 9, 59, 23, 67, 1, 34, 19, 30, 25, 34, 1, 89, 1, 36, 58, 120, 21, 44, 1, 83, 29, 38, 1, 105
Offset: 1
Keywords
Examples
For n = 4; a(n) = (sigma(1) mod 1 + sigma(2) mod 2 + sigma(4) mod 4) = (0 + 1 + 3) = 4.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[(&+[SumOfDivisors(d) mod d: d in Divisors(n)]): n in [1..100]];
-
Maple
A300657 := n -> add(numtheory:-sigma(d) mod d, d = numtheory:-divisors(n)): map(A300657, [$1..100]); # Robert Israel, Mar 11 2018
-
Mathematica
Array[DivisorSum[#, Mod[DivisorSigma[1, #], #] &] &, 72] (* or *) Fold[Function[{a, n}, Append[a, {Total@ Map[a[[#, -1]] &, Most@ Divisors@ n] + #, #} &@ Mod[DivisorSigma[1, n], n]]], {{0, 0}}, Range[2, 72]][[All, 1]] (* Michael De Vlieger, Mar 10 2018 *)
-
PARI
a(n) = sumdiv(n, d, sigma(d) % d); \\ Michel Marcus, Mar 11 2018
Formula
a(n) = Sum_{d|n} A054024(d).
Comments