cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300657 a(n) = Sum_{d|n} sigma(d) mod d.

Original entry on oeis.org

0, 1, 1, 4, 1, 2, 1, 11, 5, 10, 1, 9, 1, 12, 11, 26, 1, 9, 1, 15, 13, 16, 1, 28, 7, 18, 18, 15, 1, 32, 1, 57, 17, 22, 15, 35, 1, 24, 19, 32, 1, 36, 1, 59, 48, 28, 1, 71, 9, 59, 23, 67, 1, 34, 19, 30, 25, 34, 1, 89, 1, 36, 58, 120, 21, 44, 1, 83, 29, 38, 1, 105
Offset: 1

Views

Author

Jaroslav Krizek, Mar 10 2018

Keywords

Comments

a(n) >= A054024(n). Conjecture: a(n) = A054024(n) only for the noncomposite numbers A008578.
a(p) = 1 for p = primes.
a(n) = n for numbers: 4, 10, 294, 8388, 612018, 1037952, 3357600, ...
n divides a(n) for numbers: 1, 4, 10, 294, 8388, 218088, 612018, 883386, 1037952, 3357600, ... Corresponding quotients: 0, 1, 1, 1, 1, 2, 1, 2, 1, 1, ...
From Robert Israel, Mar 11 2018: (Start)
a(p*q) = 3+p+q if p < q are distinct primes and q>3.
a(p^k) = (p^(k+1)-(1+k)*p + k)/(p-1)^2 if p is prime and k >= 0. (End)

Examples

			For n = 4; a(n) = (sigma(1) mod 1 + sigma(2) mod 2 + sigma(4) mod 4) = (0 + 1 + 3) = 4.
		

Crossrefs

Programs

  • Magma
    [(&+[SumOfDivisors(d) mod d: d in Divisors(n)]): n in [1..100]];
    
  • Maple
    A300657 := n -> add(numtheory:-sigma(d) mod d, d = numtheory:-divisors(n)):
    map(A300657, [$1..100]); # Robert Israel, Mar 11 2018
  • Mathematica
    Array[DivisorSum[#, Mod[DivisorSigma[1, #], #] &] &, 72] (* or *)
    Fold[Function[{a, n}, Append[a, {Total@ Map[a[[#, -1]] &, Most@ Divisors@ n] + #, #} &@ Mod[DivisorSigma[1, n], n]]], {{0, 0}}, Range[2, 72]][[All, 1]] (* Michael De Vlieger, Mar 10 2018 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(d) % d); \\ Michel Marcus, Mar 11 2018

Formula

a(n) = Sum_{d|n} A054024(d).