A300660 Number of unlabeled rooted phylogenetic trees with n (leaf-) nodes such that for each inner node all children are either leaves or roots of distinct subtrees.
0, 1, 1, 2, 3, 6, 13, 30, 72, 182, 467, 1222, 3245, 8722, 23663, 64758, 178459, 494922, 1380105, 3867414, 10884821, 30756410, 87215419, 248117618, 707952902, 2025479210, 5809424605, 16700811214, 48113496645, 138884979562, 401645917999, 1163530868090
Offset: 0
Examples
: a(3) = 2: : a(4) = 3: : : o o : o o o : : / \ /|\ : / \ / \ /( )\ : : o N N N N : o N o N N N N N : : ( ) : / \ /|\ : : N N : o N N N N : : : ( ) : : : N N : From _Gus Wiseman_, Feb 06 2020: (Start) The a(2) = 1 through a(6) = 13 unlabeled rooted phylogenetic semi-identity trees: (oo) (ooo) (oooo) (ooooo) (oooooo) ((o)(oo)) ((o)(ooo)) ((o)(oooo)) ((o)(ooooo)) ((o)((o)(oo))) ((oo)(ooo)) ((oo)(oooo)) ((o)((o)(ooo))) ((o)(oo)(ooo)) ((oo)((o)(oo))) (((o)(oo))(ooo)) ((o)((o)((o)(oo)))) ((o)((o)(oooo))) ((o)((oo)(ooo))) ((oo)((o)(ooo))) ((o)(oo)((o)(oo))) ((o)((o)((o)(ooo)))) ((o)((oo)((o)(oo)))) ((oo)((o)((o)(oo)))) ((o)((o)((o)((o)(oo))))) (End)
Links
Crossrefs
Programs
-
Maple
b:= proc(n,i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*binomial(a(i), j), j=0..n/i))) end: a:= n-> `if`(n=0, 0, 1+b(n, n-1)): seq(a(n), n=0..30);
-
Mathematica
b[0, ] = 1; b[, _?NonPositive] = 0; b[n_, i_] := b[n, i] = Sum[b[n-i*j, i-1]*Binomial[a[i], j], {j, 0, n/i}]; a[0] = 0; a[n_] := a[n] = 1 + b[n, n-1]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, May 03 2019, from Maple *) ursit[n_]:=Prepend[Join@@Table[Select[Union[Sort/@Tuples[ursit/@ptn]],UnsameQ@@#&],{ptn,Select[IntegerPartitions[n],Length[#]>1&]}],n]; Table[Length[ursit[n]],{n,10}] (* Gus Wiseman, Feb 06 2020 *)
Formula
a(n) ~ c * d^n / n^(3/2), where d = 3.045141208159736483720243229947630323380565686... and c = 0.2004129296838557718008171812000512670126... - Vaclav Kotesovec, Aug 27 2018
Comments