A300789 Heinz numbers of integer partitions whose Young diagram can be tiled by dominos.
1, 3, 4, 7, 9, 10, 12, 13, 16, 19, 21, 22, 25, 27, 28, 29, 34, 36, 37, 39, 40, 43, 46, 48, 49, 52, 53, 55, 57, 61, 62, 63, 64, 70, 71, 75, 76, 79, 81, 82, 84, 85, 87, 88, 89, 90, 91, 94, 100, 101, 107, 108, 111, 112, 113, 115, 116, 117, 118, 121, 129, 130, 131
Offset: 1
Keywords
Examples
Sequence of integer partitions whose Young diagram can be tiled by dominos begins: (), (2), (11), (4), (22), (31), (211), (6), (1111), (8), (42), (51), (33), (222), (411).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- Solomon W. Golomb, Tiling with polyominoes, Journal of Combinatorial Theory, 1-2 (1966), 280-296.
- Wikipedia, Domino tiling
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, 0, a(n-1)) while (l-> add(`if`(l[i]::odd, (-1)^i, 0), i=1..nops(l))<>0)(sort(map(i-> numtheory[pi](i[1])$i[2], ifactors(k)[2]))) do od; k end: seq(a(n), n=1..100); # Alois P. Heinz, May 22 2018
-
Mathematica
primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Total[(-1)^Flatten[Position[primeMS[#],_?OddQ]]]===0&] (* Conjectured *)
Comments