A300652 Number of enriched p-trees of weight 2n + 1 in which all outdegrees and all leaves are odd.
1, 2, 4, 12, 40, 136, 496, 1952, 7488, 30368, 123456, 512384, 2129664, 9068672, 38391552, 165642752, 713405952, 3109135872, 13528865792, 59591322624, 261549260800, 1159547047936, 5131968999424, 22883893137408, 101851069587456, 456703499042816, 2042949493276672
Offset: 0
Keywords
Examples
The a(3) = 12 trees: 7, (511), (331), ((111)31), (3(111)1), ((311)11), (31111), ((111)(111)1), (((111)11)11), ((11111)11), ((111)1111), (1111111).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
r[n_]:=r[n]=If[OddQ[n],1,0]+Sum[Times@@r/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}]; Table[r[n],{n,1,40,2}]
-
PARI
seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))) - 1/prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 26 2018
Formula
a(n) = (1 - (-1)^n)/2 + Sum_y Product_{i in y} a(i) where the sum is over all non-singleton integer partitions of n with an odd number of parts.
Comments