A300815 Number of 3 division {a, b, c} (a < b < c) of n where b isn't a multiple of a, c isn't a multiple of a and c isn't a multiple of b.
1, 0, 2, 0, 2, 2, 4, 2, 7, 3, 9, 8, 10, 7, 17, 11, 16, 16, 23, 17, 32, 21, 31, 30, 36, 36, 52, 36, 47, 49, 63, 50, 73, 56, 75, 77, 80, 74, 105, 87, 105, 101, 116, 102, 133, 123, 143, 136, 144, 137, 185, 148, 170, 180, 194, 187, 218, 191, 223, 219, 247, 224, 278, 237, 263, 276, 292, 283, 321, 292, 344, 326, 340, 329, 399, 361
Offset: 10
Keywords
Examples
n | ------------------------------------------------------------------------------------ 10 | [2, 3, 5] 12 | [2, 3, 7], [3, 4, 5] 14 | [2, 5, 7], [3, 4, 7] 15 | [3, 5, 7], [4, 5, 6] 16 | [2, 3, 11], [2, 5, 9], [3, 5, 8], [4, 5, 7] 17 | [3, 4, 10], [4, 6, 7] 18 | [2, 3, 13], [2, 5, 11], [2, 7, 9], [3, 4, 11], [3, 7, 8], [4, 5, 9], [5, 6, 7] 19 | [3, 5, 11], [4, 6, 9], [5, 6, 8]
Links
- Seiichi Manyama, Table of n, a(n) for n = 10..1000
Crossrefs
Cf. A003165.
Formula
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} c(i/j) * c((n-i-j)/i) * c((n-i-j)/j), where c(n) = ceiling(n) - floor(n). - Wesley Ivan Hurt, Apr 13 2021