A300820 Length of the longest sequence of consecutive primes in the prime factorization of n. a(1) = 0.
0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3
Offset: 1
Keywords
Examples
For n = 350 = 2 * 5^2 * 7 = prime(1) * prime(3)^2 * prime(4), the longest stretch of consecutive primes is from prime(3) to prime(4), with length 2, thus a(350) = 2.
Links
Programs
-
PARI
A300820(n) = if(omega(n)<=1, omega(n), my(pis=apply(p->primepi(p),factor(n)[,1]),el=1,m=1); for(i=2,#pis,if(pis[i] == (1+pis[i-1]),el++; m = max(m,el), el=1)); (m));
-
PARI
a(n) = {if(n == 1, return(0)); my(res = 1, f = factor(n)[, 1]~, t = 1); for(i = 1, #f - 1, if(f[i+1]==nextprime(f[i]+1), t++, res = max(res, t); t = 1)); max(res, t)} \\ David A. Corneth, Mar 21 2018