A300840 Fermi-Dirac factorization prime shift towards smaller terms: a(n) = A052330(floor(A052331(n)/2)).
1, 1, 2, 3, 4, 2, 5, 3, 7, 4, 9, 6, 11, 5, 8, 13, 16, 7, 17, 12, 10, 9, 19, 6, 23, 11, 14, 15, 25, 8, 29, 13, 18, 16, 20, 21, 31, 17, 22, 12, 37, 10, 41, 27, 28, 19, 43, 26, 47, 23, 32, 33, 49, 14, 36, 15, 34, 25, 53, 24, 59, 29, 35, 39, 44, 18, 61, 48, 38, 20, 67, 21, 71, 31, 46, 51, 45, 22, 73, 52, 79, 37, 81, 30, 64, 41, 50, 27
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Mathematica
fdPrimeQ[n_] := Module[{f = FactorInteger[n], e}, Length[f] == 1 && (2^IntegerExponent[(e = f[[1, 2]]), 2] == e)]; prevFDPrime[n_] := Module[{k = n - 1}, While[! fdPrimeQ[k], k--]; k]; fd[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Table[If[b[[j]] > 0, p^(2^(m - j)), Nothing], {j, 1, m}]]; a[n_] := Times @@ prevFDPrime /@ Flatten[fd @@@ FactorInteger[n]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
-
PARI
up_to_e = 8192; v050376 = vector(up_to_e); A050376(n) = v050376[n]; ispow2(n) = (n && !bitand(n,n-1)); i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break)); A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); }; A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); }; A300840(n) = A052330(A052331(n)>>1);
Comments