cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300841 Fermi-Dirac factorization prime shift towards larger terms: a(n) = A052330(2*A052331(n)).

Original entry on oeis.org

1, 3, 4, 5, 7, 12, 9, 15, 11, 21, 13, 20, 16, 27, 28, 17, 19, 33, 23, 35, 36, 39, 25, 60, 29, 48, 44, 45, 31, 84, 37, 51, 52, 57, 63, 55, 41, 69, 64, 105, 43, 108, 47, 65, 77, 75, 49, 68, 53, 87, 76, 80, 59, 132, 91, 135, 92, 93, 61, 140, 67, 111, 99, 85, 112, 156, 71, 95, 100, 189, 73, 165, 79, 123, 116, 115, 117, 192, 81
Offset: 1

Views

Author

Antti Karttunen, Apr 12 2018

Keywords

Comments

With n having a unique factorization as A050376(i) * A050376(j) * ... * A050376(k), with i, j, ..., k all distinct, a(n) = A050376(1+i) * A050376(1+j) * ... * A050376(1+k).
Multiplicative because for coprime m and n the Fermi-Dirac factorizations of m and n are disjoint and their union is the Fermi-Dirac factorization of m * n. - Andrew Howroyd, Aug 02 2018

Examples

			For n = 6 = A050376(1)*A050376(2), a(6) = A050376(2)*A050376(3) = 3*4 = 12.
For n = 12 = A050376(2)*A050376(3), a(12) = A050376(3)*A050376(4) = 4*5 = 20.
		

Crossrefs

Cf. A050376, A052330, A052331, A059897, A300840 (a left inverse).
Cf. also A003961.
Range of values is A003159.

Programs

  • Mathematica
    fdPrimeQ[n_] := Module[{f = FactorInteger[n], e}, Length[f] == 1 && (2^IntegerExponent[(e = f[[1, 2]]), 2] == e)];
    nextFDPrime[n_] := Module[{k = n + 1}, While[! fdPrimeQ[k], k++]; k];
    fd[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Table[If[b[[j]] > 0, p^(2^(m - j)), Nothing], {j, 1, m}]];
    a[n_] := Times @@ nextFDPrime /@ Flatten[fd @@@ FactorInteger[n]]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Sep 07 2023 *)
  • PARI
    up_to_e = 8192;
    v050376 = vector(up_to_e);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A052331(n) = { my(s=0,e); while(n > 1, fordiv(n, d, if(((n/d)>1)&&ispow2(isprimepower(n/d)), e = vecsearch(v050376, n/d); if(!e, print("v050376 too short!"); return(1/0)); s += 2^(e-1); n = d; break))); (s); };
    A300841(n) = A052330(2*A052331(n));

Formula

a(n) = A052330(2*A052331(n)).
For all n >= 1, a(A050376(n)) = A050376(1+n).
For all n >= 1, A300840(a(n)) = n.
a(A059897(n,k)) = A059897(a(n), a(k)). - Peter Munn, Nov 23 2019