cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300853 L.g.f.: log(Product_{k>=1} (1 + x^(k^2))) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, -1, 1, 3, 1, -1, 1, -5, 10, -1, 1, 3, 1, -1, 1, 11, 1, -10, 1, 3, 1, -1, 1, -5, 26, -1, 10, 3, 1, -1, 1, -21, 1, -1, 1, 30, 1, -1, 1, -5, 1, -1, 1, 3, 10, -1, 1, 11, 50, -26, 1, 3, 1, -10, 1, -5, 1, -1, 1, 3, 1, -1, 10, 43, 1, -1, 1, 3, 1, -1, 1, -50, 1, -1, 26, 3, 1, -1, 1, 11, 91, -1, 1, 3, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 13 2018

Keywords

Examples

			L.g.f.: L(x) = x - x^2/2 + x^3/3 + 3*x^4/4 + x^5/5 - x^6/6 + x^7/7 - 5*x^8/8 + 10*x^9/9 - x^10/10 + ...
exp(L(x)) = 1 + x + x^4 + x^5 + x^9 + x^10 + x^13 + x^14 + ... + A033461(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 85; Rest[CoefficientList[Series[Log[Product[(1 + x^k^2), {k, 1, Floor[nmax^(1/2) + 1]}]], {x, 0, nmax}],x] Range[0, nmax]]
    nmax = 85; Rest[CoefficientList[Series[Sum[k^2 x^k^2/(1 + x^k^2), {k, 1,Floor[nmax^(1/2) + 1]}], {x, 0, nmax}], x]]
    Table[DivisorSum[n, (-1)^(n/# + 1) # &, IntegerQ[#^(1/2)] &], {n, 85}]
    f[p_, e_] := If[p == 2, (1 - (-2)^(e + 1))/3, (p^(2*Floor[e/2 + 1]) - 1)/(p^2 - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 25 2020 *)
  • PARI
    seq(n)={Vec(deriv(log(prod(k=1, n, (1 + x^(k^2) + O(x*x^n))))))} \\ Andrew Howroyd, Jul 20 2018
    
  • PARI
    a(n)={sumdiv(n, d, if(n%d^2, 0, (-1)^(n/d^2 + 1) * d^2))} \\ Andrew Howroyd, Jul 20 2018

Formula

G.f.: Sum_{k>=1} k^2*x^(k^2)/(1 + x^(k^2)).
a(n) = 1 if n is an odd squarefree (A056911).
a(n) = -1 if n is an even squarefree (A039956).
a(n) = Sum_{d^2|n} (-1)^(n/d^2 + 1) * d^2. - Andrew Howroyd, Jul 20 2018
Multiplicative with a(2^e) = (1 - (-2)^(e + 1))/3, and a(p^e) = (p^(2*floor(e/2 + 1)) - 1)/(p^2 - 1) for an odd prime p. - Amiram Eldar, Oct 25 2020
From Amiram Eldar, Dec 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * (1 - 1/2^(s-1)).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (1 - 1/sqrt(2)) * zeta(3/2)/3 = A268682 * A078434 / 3 = 0.255049... . (End)

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018