cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300909 Sum of 4th powers dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 82, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 15 2018

Keywords

Comments

Multiplicative with a(p^e) = (p^(4*(1+floor(e/4)))-1)/(p^4-1). - Robert Israel, Mar 15 2018

Examples

			a(16) = 17 because 16 has 5 divisors {1, 2, 4, 8, 16} among which 2 divisors {1, 16} are 4th powers and 1 + 16 = 17.
L.g.f.: L(x) = x + x^2/2 + x^3/3 + x^4/4 + x^5/5 + x^6/6 + x^7/7 + x^8/8 + x^9/9 + x^10/10 + x^11/11 + x^12/12 + x^13/13 + x^14/14 + x^15/15 + 17*x^16/16 + x^17/17 + ...
exp(L(x)) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^9 + x^10 + x^11 + x^12 + x^13 + x^14 + x^15 + 2*x^16 + 2*x^17 + ... + A046042(n)*x^n + ...
		

Crossrefs

Cf. A000583, A001159, A035316, A046042, A046100 (positions of ones), A063775, A113061.

Programs

  • Maple
    N:= 1000: # for a(1)..a(N)
    V:= Vector(N,1):
    for m from 2 to floor(N^(1/4)) do
      R:= [seq(i,i=m^4 .. N, m^4)];
      V[R]:= map(`+`,V[R],m^4)
    od:
    convert(V,list); # Robert Israel, Mar 15 2018
  • Mathematica
    Table[DivisorSum[n, # &, IntegerQ[#^(1/4)] &], {n, 112}]
    nmax = 112; Rest[CoefficientList[Series[Sum[k^4 x^k^4/(1 - x^k^4), {k, 1, 10}], {x, 0, nmax}], x]]
    nmax = 112; Rest[CoefficientList[Series[-Log[Product[(1 - x^k^4), {k, 1, 10}]], {x, 0, nmax}], x] Range[0, nmax]]
    f[p_, e_] := (p^(4*(1 + Floor[e/4])) - 1)/(p^4 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 01 2020 *)
  • PARI
    a(n) = sumdiv(n, d, d*ispower(d, 4)); \\ Michel Marcus, Mar 15 2018

Formula

G.f.: Sum_{k>=1} k^4*x^(k^4)/(1 - x^(k^4)).
L.g.f.: -log(Product_{k>=1} (1 - x^(k^4))) = Sum_{n>=1} a(n)*x^n/n.
D.g.f.: zeta(s)*zeta(4s-4). - Robert Israel, Mar 15 2018
Sum_{k=1..n} a(k) ~ zeta(5/4)*n^(5/4)/5 - n/2. - Vaclav Kotesovec, Dec 01 2020