cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300915 Order of the group PSL(2,Z_n).

Original entry on oeis.org

1, 6, 12, 24, 60, 72, 168, 96, 324, 360, 660, 288, 1092, 1008, 720, 768, 2448, 1944, 3420, 1440, 2016, 3960, 6072, 1152, 7500, 6552, 8748, 4032, 12180, 4320, 14880, 6144, 7920, 14688, 10080, 7776, 25308, 20520, 13104, 5760
Offset: 1

Views

Author

Geoffrey Critzer, Mar 16 2018

Keywords

Comments

The projective special linear group PSL(2,Z_n) is the quotient group of SL(2,Z_n) with its center. The center of SL(2,Z_n) is the group of scalar matrices whose diagonal entry is x in Z_n such that x^2 = 1. The elements of PSL(2,Z_n) are equivalence classes of 2 X 2 matrices with entries in Z_n where two matrices are equivalent if one is a scalar multiple of the other.

Crossrefs

Programs

  • Mathematica
    n := 2; nn = 40; \[Gamma][n_, q_] := Product[q^n - q^i, {i, 0, n - 1}]; Prepend[ Table[Product[ FactorInteger[m][[All, 1]][[j]]^(n^2 (FactorInteger[m][[All, 2]][[j]] - 1)) \[Gamma][n,FactorInteger[m][[All, 1]][[j]]], {j, 1, PrimeNu[m]}], {m, 2, nn}]/Table[EulerPhi[m], {m, 2, nn}]/ Table[Count[Mod[Select[Range[m], GCD[#, m] == 1 &]^n, m], 1], {m, 2, nn}], 1]
    f[p_, e_] := (p^2-1)*p^(3*e-2)/2; f[2, e_] := Switch[e, 1, 6, 2, 24, , 3*2^(3*e-4)]; a[1] = 1; a[n] := Times @@ f @@@ FactorInteger[n]; Array[a, 40] (* Amiram Eldar, Dec 01 2022 *)
  • PARI
    a(n) = {my(f=factor(n)); prod(i=1, #f~, my([p,e]=f[i,]); (p^2-1)*p^(3*e-2)/if(p==2, 2^min(2, e-1), 2))} \\ Andrew Howroyd, Aug 01 2018

Formula

a(n) = A000056(n)/A060594(n).
Multiplicative with a(2) = 6, a(2^2) = 24, a(2^e) = 3*2^(3*e-4) for e > 2, and a(p^e) = (p^2-1)*p^(3*e-2)/2 for p > 2. - Amiram Eldar, Dec 01 2022

Extensions

Keyword:mult added by Andrew Howroyd, Aug 01 2018