cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300951 a(n) = Product_{j=1..floor(n/2)} p(j) where p(j) = j if j is prime else 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 6, 6, 6, 6, 30, 30, 30, 30, 210, 210, 210, 210, 210, 210, 210, 210, 2310, 2310, 2310, 2310, 30030, 30030, 30030, 30030, 30030, 30030, 30030, 30030, 510510, 510510, 510510, 510510, 9699690, 9699690, 9699690, 9699690, 9699690, 9699690, 9699690
Offset: 0

Views

Author

Peter Luschny, Mar 16 2018

Keywords

Comments

a(4*n+2)=a(4*n+3)=a(4*n+4)=a(4*n+5) for n >= 1. - Robert Israel, Mar 16 2018
The length of the n-th run is given by 2*A054541(n). - Michel Marcus, Mar 17 2018

Crossrefs

Programs

  • Maple
    a := n -> mul(`if`(isprime(j), j, 1), j=1..iquo(n,2)):
    seq(a(n), n=0..44);
    # Alternative:
    f:= proc(n) option remember;
      if n::even and isprime(n/2) then procname(n-1)*n/2 else procname(n-1) fi
    end proc:
    f(0):= 1:
    map(f, [$0..100]); # Robert Israel, Mar 16 2018
  • Mathematica
    {#,#}&/@FoldList[Times,Table[If[PrimeQ[n],n,1],{n,0,30}]]//Flatten (* Harvey P. Dale, Dec 25 2019 *)
  • PARI
    a(n) = prod(i=1, n\2, if(isprime(i), i, 1)); \\ Altug Alkan, Mar 16 2018

Formula

a(n) = A002110(A056172(n)). - Robert Israel, Mar 16 2018