A300955 In the prime tower factorization of n, replace 2's with 3's and 3's with 2's.
1, 3, 2, 27, 5, 6, 7, 9, 8, 15, 11, 54, 13, 21, 10, 7625597484987, 17, 24, 19, 135, 14, 33, 23, 18, 125, 39, 4, 189, 29, 30, 31, 243, 22, 51, 35, 216, 37, 57, 26, 45, 41, 42, 43, 297, 40, 69, 47, 15251194969974, 343, 375, 34, 351, 53, 12, 55, 63, 38, 87, 59
Offset: 1
Examples
a(6) = a(2 * 3) = 3 * 2 = 6. a(16) = a(2 ^ 2 ^ 2) = 3 ^ 3 ^ 3 = 7625597484987.
Links
Programs
-
Maple
a:= n-> `if`(n=1, 1, mul(`if`(i[1]=2, 3, `if`(i[1]=3, 2, i[1]))^a(i[2]), i=ifactors(n)[2])): seq(a(n), n=1..60); # Alois P. Heinz, Mar 17 2018
-
Mathematica
a[n_] := If[n == 1, 1, Product[If[i[[1]] == 2, 3, If[i[[1]] == 3, 2, i[[1]]]]^a[i[[2]]], {i, FactorInteger[n]}]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jan 30 2025, after Alois P. Heinz *)
-
PARI
a(n) = my (f=factor(n)); prod(i=1, #f~, my (p=f[i,1]); if (p==2, 3, p==3, 2, p)^a(f[i,2]))
Formula
Multiplicative with a(p^k) = A064614(p)^a(k).
a(a(n)) = n.
Comments