cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A300984 Numbers whose sum of squarefree divisors and sum of nonsquarefree divisors are both squarefree numbers.

Original entry on oeis.org

676, 1352, 2704, 5408, 5476, 8788, 10816, 10952, 14884, 21316, 21632, 21904, 29768, 35152, 42632, 43264, 43808, 59536, 70304, 85264, 86528, 95048, 114244, 119072, 140608, 148996, 170528, 173056, 175232, 190096, 202612, 209764, 228488, 238144, 262088, 281216
Offset: 1

Views

Author

Michel Lagneau, Mar 17 2018

Keywords

Comments

Conjecture: a(n) is of the form a(n) = 2^i*p^j with i, j integers and p prime. This has been verified for n up to 10^7.
Observation: For n < = 10^7, p belongs to the set E = {13, 37, 61, 73, 109, 157, 181, 193, 229, 277, 313, 373, 397, 409, 421, 433, 457, 541, 601, 613, 661, 673, 709, 733, 757, 769, 829, 853, 877, 997, 1009, 1021, 1033, 1069, 1093, 1117, 1129, 1153, 1201, 1213, 1237, 1297, 1381, 1429, 1453, 1489}. We observe that E minus {181, 433, 601, 769, 853, 1021, 1429} belongs to A082539.
Generalization: For n <= 10^m with m > 7, it is conjectured that a majority of primes p where a(n) = 2^i*p^j are in A082539. For example, with m = 7, 84% of the primes p are in A082539.

Examples

			676 is in the sequence because A048250(676) = 42 = 2*3*7 and A162296(676) = 1239 = 3*7*59 are both squarefree numbers.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[SquareFreeQ[Total[Select[Divisors[n],SquareFreeQ]]]&& SquareFreeQ[DivisorSigma[1,n]-Total[Select[Divisors[n],SquareFreeQ]]],AppendTo[lst,n]],{n,300000}];lst
  • PARI
    isok(n) = my(sd = sumdiv(n,d,d*issquarefree(d))); issquarefree(sd) && issquarefree(sigma(n) - sd); \\ Michel Marcus, Mar 17 2018