A300987 O.g.f. A(x) satisfies: A(x) = x*(1 - 2*x*A'(x)) / (1 - 3*x*A'(x)).
1, 1, 5, 36, 327, 3489, 42048, 559008, 8073243, 125328411, 2075525505, 36460943208, 676484058564, 13210384019292, 270753854165604, 5810388957096552, 130292809125319539, 3047472204302259711, 74227110587569392471, 1879966895740420683492, 49443968787368161215087, 1348661750106914651234385, 38107004920979745293594856, 1114125483618428275543280400, 33669232396216806674333898900
Offset: 1
Keywords
Examples
O.g.f.: A(x) = x + x^2 + 5*x^3 + 36*x^4 + 327*x^5 + 3489*x^6 + 42048*x^7 + 559008*x^8 + 8073243*x^9 + 125328411*x^10 + 2075525505*x^11 + ... where A(x) = x*(1 - 2*x*A'(x)) / (1 - 3*x*A'(x)). RELATED SERIES. exp(A(x)) = 1 + x + 3*x^2/2! + 37*x^3/3! + 1009*x^4/4! + 44541*x^5/5! + 2799931*x^6/6! + 233188033*x^7/7! + 24562692897*x^8/8! + 3168510747769*x^9/9! + 488856473079571*x^10/10! + ... + A300986(n)*x^n/n! + ... A'(x) = 1 + 2*x + 15*x^2 + 144*x^3 + 1635*x^4 + 20934*x^5 + 294336*x^6 + 4472064*x^7 + 72659187*x^8 + 1253284110*x^9 + 22830780555*x^10 + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 1..200
Programs
-
PARI
{a(n) = my(A=x); for(i=1, n, A = x*(1-2*x*A')/(1-3*x*A' +x*O(x^n))); polcoeff(A, n)} for(n=1, 25, print1(a(n), ", "))
-
PARI
/* [x^n] exp( 3*n * A(x) ) = (n + 2) * [x^(n-1)] exp( 3*n * A(x) ) */ {a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(3*(#A-1))); A[#A] = ((#A+1)*V[#A-1] - V[#A])/(3*(#A-1)) ); polcoeff( log(Ser(A)), n)} for(n=1, 25, print1(a(n), ", "))
Formula
O.g.f. A(x) satisfies: [x^n] exp( 3*n * A(x) ) = (n + 2) * [x^(n-1)] exp( 3*n * A(x) ) for n>=1.
a(n) ~ c * n! * n^5, where c = 0.00014640560804... - Vaclav Kotesovec, Mar 20 2018
Comments