A088716
G.f. satisfies: A(x) = 1 + x*A(x)*d/dx[x*A(x)] = 1 + x*A(x)^2 + x^2*A(x)*A'(x).
Original entry on oeis.org
1, 1, 3, 14, 85, 621, 5236, 49680, 521721, 5994155, 74701055, 1003125282, 14437634276, 221727608284, 3619710743580, 62605324014816, 1143782167355649, 22014467470369143, 445296254367273457, 9444925598142843970
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- M. J. H. Al-Kaabi, Monomial Bases for free pre-Lie algebras, Sem. Lothar. Comb. 71 (2014) B71b.
- Michael Borinsky, Gerald V. Dunne, and Karen Yeats, Tree-tubings and the combinatorics of resurgent Dyson-Schwinger equations, arXiv:2408.15883 [math-ph], 2024. See p. 13.
- Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 11.
-
a:= proc(n) option remember; `if`(n=0, 1, add(
a(j)*a(n-j-1)*(j+1), j=0..n-1))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Aug 10 2017
-
a=ConstantArray[0,21]; a[[1]]=1; a[[2]]=1; Do[a[[n+1]] = Sum[k*a[[n-k+1]]*a[[k]],{k,1,n}],{n,2,20}]; a (* Vaclav Kotesovec, Feb 21 2014 *)
m = 20; A[_] = 0;
Do[A[x_] = 1 + x A[x]^2 + x^2 A[x] A'[x] + O[x]^m // Normal, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Feb 18 2020 *)
a[1]:=1; a[2]:=1; a[n_]:=a[n]=n/2 Sum[a[k] a[n-k], {k,1,n-1}];
Map[a,Range[20]] (* Oliver Seipel, Nov 03 2024 ,after Schröder 1870 *)
-
a(n)=if(n==0,1,sum(k=0,n-1,(k+1)*a(k)*a(n-k-1)))
-
{a(n)=local(G=1+x);for(i=1,n,G=exp(x/(1 - x*deriv(G)/G+x*O(x^n))));polcoeff(log(G)/x,n)} \\ Paul D. Hanna, Jan 01 2011
A300736
O.g.f. A(x) satisfies: A(x) = x*(1 - x*A'(x)) / (1 - 2*x*A'(x)).
Original entry on oeis.org
1, 1, 4, 24, 184, 1672, 17296, 198800, 2499200, 33992000, 496281344, 7731823616, 127946465280, 2240485196800, 41387447564800, 804353715776000, 16408115358117888, 350584123058300928, 7831051680901885952, 182550106828365115392, 4433782438058087202816, 112031844502468602085376, 2940834866411162315849728
Offset: 1
O.g.f.: A(x) = x + x^2 + 4*x^3 + 24*x^4 + 184*x^5 + 1672*x^6 + 17296*x^7 + 198800*x^8 + 2499200*x^9 + 33992000*x^10 + 496281344*x^11 + 7731823616*x^12 + ...
where
A(x) = x*(1 - x*A'(x)) / (1 - 2*x*A'(x)).
RELATED SERIES.
exp(A(x)) = 1 + x + 3*x^2/2! + 31*x^3/3! + 697*x^4/4! + 25761*x^5/5! + 1371691*x^6/6! + 97677343*x^7/7! + 8869533681*x^8/8! + 993709302337*x^9/9! + 134086553693011*x^10/10! + ... + A300735(n)*x^n/n! + ...
A'(x) = 1 + 2*x + 12*x^2 + 96*x^3 + 920*x^4 + 10032*x^5 + 121072*x^6 + 1590400*x^7 + 22492800*x^8 + 339920000*x^9 + 5459094784*x^10 + ...
-
{a(n) = my(A=x); for(i=1,n, A = x*(1-x*A')/(1-2*x*A' +x*O(x^n))); polcoeff(A,n)}
for(n=1, 25, print1(a(n), ", "))
-
/* [x^n] exp( 2*n * A(x) ) = (n + 1) * [x^(n-1)] exp( 2*n * A(x) ) */
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(2*(#A-1))); A[#A] = ((#A)*V[#A-1] - V[#A])/(2*(#A-1)) ); polcoeff( log(Ser(A)), n)}
for(n=1, 25, print1(a(n), ", "))
A300986
E.g.f. A(x) satisfies: [x^n] A(x)^(3*n) = (n + 2) * [x^(n-1)] A(x)^(3*n) for n>=1.
Original entry on oeis.org
1, 1, 3, 37, 1009, 44541, 2799931, 233188033, 24562692897, 3168510747769, 488856473079571, 88597562768075901, 18595324838343722833, 4468203984338696710837, 1217521669261709053889739, 373205252376454629490607641, 127806482596653000272128733761, 48605321514711360780713536416753, 20419150659462692416601828820774307, 9431006202634362924849710001022454869
Offset: 0
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 37*x^3/3! + 1009*x^4/4! + 44541*x^5/5! + 2799931*x^6/6! + 233188033*x^7/7! + 24562692897*x^8/8! + 3168510747769*x^9/9! + 488856473079571*x^10/10! + ...
such that [x^n] A(x)^(3*n) = (n+2) * [x^(n-1)] A(x)^(3*n) for n>=1.
RELATED SERIES.
A(x)^3 = 1 + 3*x + 15*x^2/2! + 171*x^3/3! + 4185*x^4/4! + 173583*x^5/5! + 10491039*x^6/6! + 850141575*x^7/7! + 87745941873*x^8/8! + 11141030530395*x^9/9! + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients in A(x)^(3*n) begins:
n=1: [(1), (3), 15/2, 57/2, 1395/8, 57861/40, 1165671/80, 18892035/112, ...];
n=2: [1, (6), (24), 102, 576, 21834/5, 206244/5, 15974712/35, ...];
n=3: [1, 9, (99/2), (495/2), 11259/8, 401463/40, 7120899/80, 525246849/560, ...];
n=4: [1, 12, 84, (492), (2952), 102708/5, 864756/5, 60722784/35, ...];
n=5: [1, 15, 255/2, 1725/2, (44595/8), (312165/8), 5077035/16, 340795215/112, ...];
n=6: [1, 18, 180, 1386, 9720, (349542/5), (2796336/5), 36178488/7, ...];
n=7: [1, 21, 483/2, 4179/2, 127323/8, 4767147/40, (76271139/80), (686440251/80), ...]; ...
in which the coefficients in parenthesis are related by
3 = 3*(1); 24 = 4*(6); 495/2 = 5*(99/2); 2952 = 6*(492); 312165/8 = 7*(44595/8); 2796336/5 = 8*(349542/5); 686440251/80 = 9*(76271139/80); ...
illustrating that: [x^n] A(x)^(3*n) = (n+2) * [x^(n-1)] A(x)^(3*n).
LOGARITHMIC PROPERTY.
The logarithm of the e.g.f. is an integer power series in x satisfying
log(A(x)) = x * (1 - 2*x*A'(x)/A(x)) / (1 - 3*x*A'(x)/A(x));
explicitly,
log(A(x)) = x + x^2 + 5*x^3 + 36*x^4 + 327*x^5 + 3489*x^6 + 42048*x^7 + 559008*x^8 + 8073243*x^9 + 125328411*x^10 + 2075525505*x^11 + 36460943208*x^12 + ... + A300987(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(3*(#A-1))); A[#A] = ((#A+1)*V[#A-1] - V[#A])/(3*(#A-1)) ); n!*polcoeff( Ser(A), n)}
for(n=0, 25, print1(a(n), ", "))
-
{a(n) = my(A=1); for(i=1, n, A = exp( x*(A-2*x*A')/(A-3*x*A' +x*O(x^n)) ) ); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
A300989
O.g.f. A(x) satisfies: A(x) = x*(1 - 3*x*A'(x)) / (1 - 4*x*A'(x)).
Original entry on oeis.org
1, 1, 6, 50, 520, 6312, 86080, 1288704, 20862720, 361454720, 6652338176, 129341001216, 2645494627328, 56734280221696, 1272300911597568, 29769957834147840, 725430667245355008, 18379623419316338688, 483476314203202945024, 13187069277429966733312, 372512001057014648537088, 10886129458069912361631744, 328776894530826384975593472
Offset: 1
O.g.f.: A(x) = x + x^2 + 6*x^3 + 50*x^4 + 520*x^5 + 6312*x^6 + 86080*x^7 + 1288704*x^8 + 20862720*x^9 + 361454720*x^10 + ...
where
A(x) = x * (1 - 3*x*A'(x)) / (1 - 4*x*A'(x)).
RELATED SERIES.
exp(A(x)) = 1 + x + 3*x^2/2! + 43*x^3/3! + 1369*x^4/4! + 69561*x^5/5! + 4991371*x^6/6! + 471516403*x^7/7! + 56029153713*x^8/8! + 8112993527089*x^9/9! + ... + A300988(n)*x^n/n! + ...
A'(x) = 1 + 2*x + 18*x^2 + 200*x^3 + 2600*x^4 + 37872*x^5 + 602560*x^6 + 10309632*x^7 + 187764480*x^8 + 3614547200*x^9 + ...
-
{a(n) = my(A=x); for(i=1, n, A = x*(1-3*x*A')/(1-4*x*A' +x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
/* [x^n] exp( 4*n * A(x) ) = (n + 3) * [x^(n-1)] exp( 4*n * A(x) ) */
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(4*(#A-1))); A[#A] = ((#A+2)*V[#A-1] - V[#A])/(4*(#A-1)) ); polcoeff( log(Ser(A)), n)}
for(n=1, 25, print1(a(n), ", "))
A300991
O.g.f. A(x) satisfies: A(x) = x * (1 - 4*x*A'(x)) / (1 - 5*x*A'(x)).
Original entry on oeis.org
1, 1, 7, 66, 769, 10405, 157540, 2609120, 46569365, 886686635, 17878075475, 379658470550, 8456459003700, 196924945517500, 4781934837995500, 120830066634026000, 3171336593264680125, 86326557180541530375, 2433904105428495204125, 70991247725936793222750, 2139844431980825211095625, 66589703922949982943093125, 2137375830643389417662717500, 70701647390083655222041600000
Offset: 1
O.g.f.: A(x) = x + x^2 + 7*x^3 + 66*x^4 + 769*x^5 + 10405*x^6 + 157540*x^7 + 2609120*x^8 + 46569365*x^9 + 886686635*x^10 + ...
where
A(x) = x * (1 - 4*x*A'(x)) / (1 - 5*x*A'(x)).
RELATED SERIES.
exp(A(x)) = 1 + x + 3*x^2/2! + 49*x^3/3! + 1777*x^4/4! + 101541*x^5/5! + 8140411*x^6/6! + 855134533*x^7/7! + 112545136929*x^8/8! + 17984228218057*x^9/9! + ... + A300990(n)*x^n/n! + ...
A'(x) = 1 + 2*x + 21*x^2 + 264*x^3 + 3845*x^4 + 62430*x^5 + 1102780*x^6 + 20872960*x^7 + 419124285*x^8 + 8866866350*x^9 + ...
-
{a(n) = my(A=x); for(i=1, n, A = x*(1-4*x*A')/(1-5*x*A' +x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
/* [x^n] exp( 5*n * A(x) ) = (n + 4) * [x^(n-1)] exp( 5*n * A(x) ) */
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(5*(#A-1))); A[#A] = ((#A+3)*V[#A-1] - V[#A])/(5*(#A-1)) ); polcoeff( log(Ser(A)), n)}
for(n=1, 25, print1(a(n), ", "))
A300993
O.g.f. A(x) satisfies: A(x) = x * (1 - 5*x*A'(x)) / (1 - 6*x*A'(x)).
Original entry on oeis.org
1, 1, 8, 84, 1080, 16056, 266256, 4816080, 93638016, 1937252160, 42339628800, 972303685632, 23365476089856, 585706819083264, 15276194983411200, 413695882240574976, 11612673418376392704, 337392794531354462208, 10133165365696293507072, 314252173854006410465280, 10053170842576476899524608, 331455812860465669006442496
Offset: 1
O.g.f.: A(x) = x + x^2 + 8*x^3 + 84*x^4 + 1080*x^5 + 16056*x^6 + 266256*x^7 + 4816080*x^8 + 93638016*x^9 + 1937252160*x^10 + ...
where
A(x) = x * (1 - 5*x*A'(x)) / (1 - 6*x*A'(x)).
RELATED SERIES.
exp(A(x)) = 1 + x + 3*x^2/2! + 55*x^3/3! + 2233*x^4/4! + 141201*x^5/5! + 12458731*x^6/6! + 1435102663*x^7/7! + 206465053425*x^8/8! + 35963535971233*x^9/9! + ... + A300992(n)*x^n/n! + ...
A'(x) = 1 + 2*x + 24*x^2 + 336*x^3 + 5400*x^4 + 96336*x^5 + 1863792*x^6 + 38528640*x^7 + 842742144*x^8 + 19372521600*x^9 + ...
-
{a(n) = my(A=x); for(i=1, n, A = x*(1-5*x*A')/(1-6*x*A' +x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
-
/* [x^n] exp( 6*n * A(x) ) = (n + 5) * [x^(n-1)] exp( 6*n * A(x) ) */
{a(n) = my(A=[1]); for(i=1, n+1, A=concat(A, 0); V=Vec(Ser(A)^(6*(#A-1))); A[#A] = ((#A+4)*V[#A-1] - V[#A])/(6*(#A-1)) ); polcoeff( log(Ser(A)), n)}
for(n=1, 25, print1(a(n), ", "))
A301385
O.g.f. A(x) satisfies: A(x) = x * (1 + 3*x*A'(x)) / (1 + x*A'(x)).
Original entry on oeis.org
1, 2, 6, 22, 94, 474, 2974, 24630, 271710, 3799570, 63378806, 1208997078, 25736584670, 602485683530, 15356903176110, 423032451327510, 12518043710674878, 395909541133928226, 13325077980379707238, 475466006418129789206, 17926802213221278261726, 712095926927360739006522, 29722097317161256669118142, 1300445348644716445771904502
Offset: 1
G.f.: A(x) = x + 2*x^2 + 6*x^3 + 22*x^4 + 94*x^5 + 474*x^6 + 2974*x^7 + 24630*x^8 + 271710*x^9 + 3799570*x^10 + ...
where
A(x) = x*(1 + 3*x*A'(x)) / (1 + x*A'(x)).
RELATED SERIES.
A'(x) = 1 + 4*x + 18*x^2 + 88*x^3 + 470*x^4 + 2844*x^5 + 20818*x^6 + 197040*x^7 + 2445390*x^8 + 37995700*x^9 + ...
exp(A(x)) = 1 + x + 5*x^2/2! + 49*x^3/3! + 745*x^4/4! + 16001*x^5/5! + 472621*x^6/6! + 19659025*x^7/7! + 1211940689*x^8/8! + ... + A301386*x^n/n! + ...
-
Rest[CoefficientList[AsymptoticDSolveValue[{A[x] == x*(1 + 3*x*A'[x])/(1 + x*A'[x]), A[1] == 1}, A[x], {x, 0, 20}], x]] (* Requires Mathematica version 11.3 or later *) (* Vaclav Kotesovec, Mar 20 2018 *)
-
{a(n) = my(A=x); for(i=0,n, A = x*(1 + 3*x*A')/(1 +x*A' +x*O(x^n)) ); polcoeff(A,n)}
for(n=1,30,print1(a(n),", "))
Showing 1-7 of 7 results.
Comments