cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301290 Partial sums of A301289.

Original entry on oeis.org

1, 5, 10, 16, 28, 42, 57, 75, 96, 122, 150, 176, 207, 245, 282, 320, 364, 410, 457, 507, 560, 618, 678, 736, 799, 869, 938, 1008, 1084, 1162, 1241, 1323, 1408, 1498, 1590, 1680, 1775, 1877, 1978, 2080, 2188, 2298, 2409, 2523, 2640, 2762, 2886, 3008, 3135, 3269, 3402, 3536
Offset: 0

Views

Author

N. J. A. Sloane, Mar 23 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301289. - Ray Chandler, Aug 31 2023

Crossrefs

Cf. A301289.

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{2,-3,4,-4,4,-3,2,-1},{1,4,5,6,12,14,15,18,21,26},100]] (* Harvey P. Dale, Jun 21 2024 *)

Formula

From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 8*a(n-4) + 8*a(n-5) - 7*a(n-6) + 5*a(n-7) - 3*a(n-8) + a(n-9) for n > 9.
G.f.: (2*x^9 - 6*x^8 + 4*x^7 - 6*x^6 - 3*x^4 - 4*x^3 - 2*x - 1)/((x - 1)^3*(x^2 + 1)*(x^2 - x + 1)*(x^2 + x + 1)). (End)