cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301302 Partial sums of A301301.

Original entry on oeis.org

1, 5, 13, 25, 41, 61, 86, 116, 150, 189, 232, 279, 332, 388, 448, 513, 581, 656, 734, 815, 902, 991, 1088, 1188, 1290, 1399, 1509, 1628, 1750, 1873, 2004, 2135, 2276, 2420, 2564, 2717, 2869, 3032, 3198, 3363, 3538, 3711, 3896, 4084, 4270, 4467, 4661, 4868, 5078, 5285, 5504
Offset: 0

Views

Author

N. J. A. Sloane, Mar 25 2018

Keywords

Comments

Linear recurrence and g.f. confirmed by Shutov/Maleev link in A301301. - Ray Chandler, Aug 31 2023

Crossrefs

Cf. A301301.

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 2, -2, 0, 0, 0, -1, 1},{1,5,13,25,41,61,86,116,150,189,232,279,332,388,448,513,581,656},51] (* Stefano Spezia, Mar 11 2025 *)

Formula

From Colin Barker, Apr 07 2018: (Start)
G.f.: (1 + x)^2*(1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 4*x^5 + 4*x^6 + 2*x^7 + 2*x^8 + x^9 + x^12 - 2*x^13 + x^14 - x^15) / ((1 - x)^3*(1 + x + x^2 + x^3 + x^4)^2).
a(n) = a(n-1) + 2*a(n-5) - 2*a(n-6) - a(n-10) + a(n-11) for n>12. (End)
a(n) ~ 54n^2/25. - Stefano Spezia, Mar 11 2025