cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301313 a(n) = Sum_{p in P} binomial(H(2,p),2), where P is the set of partitions of n, and H(2,p) = number of hooks of size 2 in p.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 6, 7, 18, 24, 49, 66, 116, 158, 255, 346, 525, 707, 1030, 1374, 1936, 2560, 3519, 4608, 6207, 8056, 10673, 13735, 17942, 22906, 29569, 37469, 47864, 60235, 76249, 95335, 119705, 148770, 185447, 229182, 283810, 348903, 429498, 525411, 643244
Offset: 0

Views

Author

Emily Anible, Apr 03 2018

Keywords

Comments

This sequence is part of the contribution to the quadratic b^2 term of a 2-truncation of the Han/Nekrasov-Okounkov hooklength formula (2-truncation here being the limiting of hook sizes counted by the formula to only those of size 1 or 2). Exploring this sequence may lead to more general formulas regarding the hooklength formula for larger hooks, or the entire contribution to the quadratic term of the formula.

Examples

			For n=6, we sum over the partitions of 6. For each partition, we calculate binomial(number of hooks of size 2 in partition, 2):
6............binomial(1,2) = 0
5,1..........binomial(1,2) = 0
4,2..........binomial(2,2) = 1
4,1,1........binomial(2,2) = 1
3,3..........binomial(2,2) = 1
3,2,1........binomial(0,2) = 0
3,1,1,1......binomial(2,2) = 1
2,2,2........binomial(2,2) = 1
2,2,1,1......binomial(2,2) = 1
2,1,1,1,1....binomial(1,2) = 0
1,1,1,1,1,1..binomial(1,2) = 0
------------------------------
Total........................6
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, l) option remember; `if`(n=0, p*(p-1)/2,
          `if`(i>n, 0, b(n, i+1, p, 1)+add(b(n-i*j, i+1, p+
          `if`(j>1, 1, 0)+l, 0), j=1..n/i)))
        end:
    a:= n-> b(n, 1, 0$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 05 2018
  • Mathematica
    b[n_, i_, p_, l_] := b[n, i, p, l] = If[n == 0, p*(p-1)/2, If[i > n, 0, b[n, i+1, p, 1] + Sum[b[n-i*j, i+1, p+If[j>1, 1, 0]+l, 0], {j, 1, n/i}]] ];
    a[n_] := b[n, 1, 0, 0];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 28 2018, after Alois P. Heinz *)
    Table[Sum[(2*k - 5 - (-1)^(k/2))*(1 + (-1)^k)/4 * PartitionsP[n-k], {k, 1, n}], {n, 0, 60}] (* Vaclav Kotesovec, Oct 06 2018 *)

Formula

G.f.: (q^4+3*q^6)/((1-q^2)*(1-q^4))*Product_{j>=1} 1/(1-q^j). - Emily Anible, May 18 2018
a(n) ~ sqrt(3) * exp(Pi*sqrt((2*n)/3)) / (4*Pi^2). - Vaclav Kotesovec, Oct 06 2018

Extensions

a(10)-a(44) from Alois P. Heinz, Apr 03 2018