A301316 a(n) = ((n-1)! + 1) mod n^2.
0, 2, 3, 7, 0, 13, 35, 49, 64, 81, 11, 1, 0, 57, 1, 1, 85, 1, 38, 1, 1, 133, 184, 1, 1, 521, 1, 1, 522, 1, 589, 1, 1, 885, 1, 1, 259, 381, 1, 1, 656, 1, 559, 1, 1, 553, 282, 1, 1, 1, 1, 1, 1802, 1, 1, 1, 1, 2553, 1593, 1, 3416, 993, 1, 1, 1, 1, 804
Offset: 1
Keywords
Examples
From _Muniru A Asiru_, Mar 20 2018: (Start) ((1-1)! + 1) mod 1^2 = (0! +1) mod 1 = 2 mod 1 = 0. ((2-1)! + 1) mod 2^2 = (1! +1) mod 4 = 2 mod 4 = 2. ((3-1)! + 1) mod 3^2 = (2! +1) mod 9 = 3 mod 9 = 3. ((4-1)! + 1) mod 4^2 = (3! +1) mod 16 = 7 mod 16 = 7. ((5-1)! + 1) mod 5^2 = (4! +1) mod 25 = 25 mod 25 = 0. ... (End)
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..10000
- Wikipedia, Wilson prime
Programs
-
GAP
List([1..60],n->(Factorial(n-1)+1) mod n^2); # Muniru A Asiru, Mar 20 2018
-
Maple
seq((factorial(n-1)+1) mod n^2,n=1..60); # Muniru A Asiru, Mar 20 2018
-
Mathematica
Array[Mod[(# - 1)! + 1, #^2] &, 67] (* Michael De Vlieger, Apr 21 2018 *)
-
PARI
a(n) = ((n-1)! + 1) % n^2; \\ Michel Marcus, Mar 18 2018
Formula
a(n) = ((n-1)! + 1) mod n^2. - Jon E. Schoenfield, Mar 18 2018
Comments