cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301317 a(n) = (n-1)! + 1 mod n^3.

Original entry on oeis.org

0, 2, 3, 7, 25, 121, 35, 433, 226, 881, 495, 1, 676, 1233, 2701, 2049, 4420, 1, 4009, 1, 2647, 6425, 4945, 1, 626, 15393, 1, 1, 13137, 1, 21731, 1, 13069, 2041, 1, 1, 23532, 19153, 50194, 1, 14104, 1, 41237, 1, 1, 76729, 86433, 1, 1, 1, 78031, 1, 77645
Offset: 1

Views

Author

Stanislav Sykora, Mar 18 2018

Keywords

Comments

There is no known number n > 1 for which a(n)=0.
For a(n) to equal 1, (n-1)! must be divisible by n^3 which tends to be the most frequent case for large n. For example, all n which are a product of three or more distinct primes belong to this category. So do all proper powers of primes except 2^2, 2^3, 2^4, 3^2, and 5^2.
Obviously, when a(n) = 1, then also A055976(n) = 1 and A301316(n) = 1.
If n is prime, a(n) is divisible by n. - Robert Israel, Mar 20 2018

Examples

			From _Muniru A Asiru_, Mar 20 2018: (Start)
((1-1)! + 1) mod 1^3 = (0! +1) mod 1 = 2 mod 1 = 0.
((2-1)! + 1) mod 2^3 = (1! +1) mod 8 = 2 mod 8 = 2.
((3-1)! + 1) mod 3^3 = (2! +1) mod 27 = 3 mod 27 = 3.
((4-1)! + 1) mod 4^3 = (3! +1) mod 64 = 7 mod 64 = 7.
((5-1)! + 1) mod 5^3 = (4! +1) mod 125 = 25 mod 125 = 25.
... (End)
		

Crossrefs

Programs

  • GAP
    List([1..60],n->(Factorial(n-1)+1) mod n^3); # Muniru A Asiru, Mar 20 2018
  • Maple
    seq((factorial(n-1)+1) mod n^3,n=1..60); # Muniru A Asiru, Mar 20 2018
  • Mathematica
    Array[Mod[(# - 1)! + 1, #^3] &, 53] (* Michael De Vlieger, Mar 19 2018 *)
  • PARI
    a(n) = ((n-1)! + 1) % n^3; \\ Michel Marcus, Mar 18 2018
    

Formula

a(n) = ((n-1)! + 1) mod n^3. - Jon E. Schoenfield, Mar 18 2018
a(n) = A038507(n-1) mod A000578(n). - Michel Marcus, Mar 20 2018