A301317 a(n) = (n-1)! + 1 mod n^3.
0, 2, 3, 7, 25, 121, 35, 433, 226, 881, 495, 1, 676, 1233, 2701, 2049, 4420, 1, 4009, 1, 2647, 6425, 4945, 1, 626, 15393, 1, 1, 13137, 1, 21731, 1, 13069, 2041, 1, 1, 23532, 19153, 50194, 1, 14104, 1, 41237, 1, 1, 76729, 86433, 1, 1, 1, 78031, 1, 77645
Offset: 1
Keywords
Examples
From _Muniru A Asiru_, Mar 20 2018: (Start) ((1-1)! + 1) mod 1^3 = (0! +1) mod 1 = 2 mod 1 = 0. ((2-1)! + 1) mod 2^3 = (1! +1) mod 8 = 2 mod 8 = 2. ((3-1)! + 1) mod 3^3 = (2! +1) mod 27 = 3 mod 27 = 3. ((4-1)! + 1) mod 4^3 = (3! +1) mod 64 = 7 mod 64 = 7. ((5-1)! + 1) mod 5^3 = (4! +1) mod 125 = 25 mod 125 = 25. ... (End)
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..10000
- Wikipedia, Wilson prime
Programs
-
GAP
List([1..60],n->(Factorial(n-1)+1) mod n^3); # Muniru A Asiru, Mar 20 2018
-
Maple
seq((factorial(n-1)+1) mod n^3,n=1..60); # Muniru A Asiru, Mar 20 2018
-
Mathematica
Array[Mod[(# - 1)! + 1, #^3] &, 53] (* Michael De Vlieger, Mar 19 2018 *)
-
PARI
a(n) = ((n-1)! + 1) % n^3; \\ Michel Marcus, Mar 18 2018
Formula
a(n) = ((n-1)! + 1) mod n^3. - Jon E. Schoenfield, Mar 18 2018
Comments