cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301384 Number of integer-sided triangles of area A188158(n).

Original entry on oeis.org

1, 2, 2, 1, 2, 1, 2, 1, 4, 1, 1, 4, 2, 2, 2, 1, 4, 3, 1, 2, 1, 2, 4, 2, 2, 1, 1, 6, 3, 1, 5, 3, 3, 2, 2, 1, 4, 1, 2, 4, 8, 5, 1, 2, 1, 3, 1, 15, 2, 4, 2, 1, 5, 1, 6, 2, 1, 3, 4, 3, 1, 2, 2, 1, 2, 4, 5, 1, 5, 4, 1, 2, 3, 5, 1, 1, 1, 6, 2, 4, 2, 1, 2, 1, 17, 4, 1
Offset: 1

Views

Author

Michel Lagneau, Mar 20 2018

Keywords

Comments

Nonzero terms of A051584.

Examples

			a(9) = 4 because A188158(9) = 60 corresponding to 4 triangles (a, b, c) = (6, 25, 29), (8, 15, 17), (10, 13, 13) and (13, 13, 24) of area 60.
		

Crossrefs

Cf. A188158, A024153 (distinct side lengths), A051516, A051584, A051585.

Programs

  • Maple
    A301384 := proc(A::integer)
        local Asqr, s,a,b,c,sol ;
        sol := 0 ;
        Asqr := A^2 ;
        for s in numtheory[divisors](Asqr) do
            if s^2> A then
            for a from 1 to s-1 do
                if modp(Asqr,s-a) = 0 then
                    for b from a to s-1 do
                        c := 2*s-a-b ;
                        if s*(s-a)*(s-b)*(s-c) = Asqr and c >= b then
                            sol := sol+1 ;
                        end if;
                    end do:
                end if;
            end do:
            end if;
        end do:
        sol ;
    end proc:
    for n from 3 to 600 do
        a301384 := A301384(n) ;
        if a301384 > 0 then
            printf("%d,\n",a301384) ;
        end if;
    end do: # R. J. Mathar, May 02 2018
  • Mathematica
    nn=1000;lst={};lst2={};Do[s=(a+b+c)/2;If[IntegerQ[s],area2=s(s-a)(s-b)(s-c);If[0