cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301451 Numbers congruent to {1, 7} mod 9.

Original entry on oeis.org

1, 7, 10, 16, 19, 25, 28, 34, 37, 43, 46, 52, 55, 61, 64, 70, 73, 79, 82, 88, 91, 97, 100, 106, 109, 115, 118, 124, 127, 133, 136, 142, 145, 151, 154, 160, 163, 169, 172, 178, 181, 187, 190, 196, 199, 205, 208, 214, 217, 223, 226, 232, 235, 241, 244, 250, 253, 259, 262, 268
Offset: 1

Views

Author

Bruno Berselli, Mar 21 2018

Keywords

Comments

First bisection of A056991, second bisection of A242660.
The squares of the terms of A174396 are the squares of this sequence.

Crossrefs

Cf. A274406: numbers congruent to {0, 8} mod 9.
Cf. A193910: numbers congruent to {2, 6} mod 9.

Programs

  • GAP
    a := [1,7,10];; for n in [4..60] do a[n] := a[n-1] + a[n-2] - a[n-3]; od; a;
    
  • Magma
    &cat [[9*n+1, 9*n+7]: n in [0..40]];
    
  • Mathematica
    Table[2 (2 n - 1) + (2 n - 3 (1 - (-1)^n))/4, {n, 1, 60}]
    {#+1,#+7}&/@(9*Range[0,30])//Flatten (* or *) LinearRecurrence[{1,1,-1},{1,7,10},60] (* Harvey P. Dale, Nov 08 2020 *)
  • PARI
    Vec(x*(1 + 6*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^60)) \\ Colin Barker, Mar 22 2018
  • Python
    [2*(2*n-1)+(2*n-3*(1-(-1)**n))/4 for n in range(1,70)]
    
  • Sage
    [n for n in (1..300) if n % 9 in (1,7)]
    

Formula

O.g.f.: x*(1 + 6*x + 2*x^2)/((1 + x)*(1 - x)^2).
E.g.f.: (3 + 8*exp(x) - 11*exp(2*x) + 18*x*exp(2*x))*exp(-x)/4.
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = 2*(2*n - 1) + (2*n - 3*(1 - (-1)^n))/4. Therefore, for n even a(n) = (9*n - 4)/2, otherwise a(n) = (9*n - 7)/2.
a(2n+1) = A017173(n). a(2n) = A017245(n-1). - R. J. Mathar, Feb 28 2019