cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301462 Number of enriched r-trees of size n.

Original entry on oeis.org

1, 2, 3, 8, 23, 77, 254, 921, 3249, 12133, 44937, 172329, 654895, 2565963, 9956885, 39536964, 156047622, 626262315, 2499486155, 10129445626, 40810378668, 166475139700, 676304156461, 2775117950448, 11342074888693, 46785595997544, 192244951610575, 796245213910406
Offset: 0

Views

Author

Gus Wiseman, Mar 21 2018

Keywords

Comments

An enriched r-tree of size n > 0 is either a single node of size n, or a finite sequence of enriched r-trees with weakly decreasing sizes summing to n - 1.
These are different from the R-trees of data science and the enriched R-trees of Bousquet-Mélou and Courtiel.

Examples

			The a(3) = 8 enriched r-trees: 3, (2), ((1)), ((())), (11), (1()), (()1), (()()).
		

Crossrefs

Programs

  • Mathematica
    ert[n_]:=ert[n]=1+Sum[Times@@ert/@y,{y,IntegerPartitions[n-1]}];
    Array[ert,30]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018

Formula

O.g.f.: 1/(1 - x) + x Product_{i > 0} 1/(1 - a(i) x^i).