A301467 Number of enriched r-trees of size n with no empty subtrees.
1, 2, 4, 8, 20, 48, 136, 360, 1040, 2944, 8704, 25280, 76320, 226720, 692992, 2096640, 6470016, 19799936, 61713152, 190683520, 598033152, 1863995392, 5879859200, 18438913536, 58464724992, 184356152832, 586898946048, 1859875518464, 5941384080384, 18901502482432
Offset: 1
Keywords
Examples
The a(4) = 8 enriched r-trees with no empty subtrees: 4, (3), (21), ((2)), (111), ((11)), ((1)1), (((1))). The a(5) = 20 enriched r-trees with no empty subtrees: 5, (4), ((3)), ((21)), (((2))), ((111)), (((11))), (((1)1)), ((((1)))), (31), (22), (2(1)), ((2)1), ((1)2), ((11)1), ((1)(1)), (((1))1), (211), ((1)11), (1111).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1910
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)* a(i)^j, j=0..n/i))) end: a:= n-> `if`(n<2, n, 1+b(n-1$2)): seq(a(n), n=1..30); # Alois P. Heinz, Jun 21 2018
-
Mathematica
pert[n_]:=pert[n]=If[n===1,1,1+Sum[Times@@pert/@y,{y,IntegerPartitions[n-1]}]]; Array[pert,30] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1] a[i]^j, {j, 0, n/i}]]]; a[n_] := a[n] = If[n < 2, n, 1 + b[n-1, n-1]]; Array[a, 30] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
-
PARI
seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); v} \\ Andrew Howroyd, Aug 26 2018
Formula
O.g.f.: x^2/(1 - x) + x Product_{i > 0} 1/(1 - a(i) x^i).
Comments