A301480 Number of rooted twice-partitions of n.
1, 1, 2, 4, 8, 15, 30, 54, 103, 186, 345, 606, 1115, 1936, 3466, 6046, 10630, 18257, 31927, 54393, 93894, 159631, 272155, 458891, 779375, 1305801, 2196009, 3667242, 6130066, 10170745, 16923127, 27942148, 46211977, 76039205, 125094369, 204952168, 335924597
Offset: 1
Keywords
Examples
The a(5) = 8 rooted twice-partitions: ((3)), ((21)), ((111)), ((2)()), ((11)()), ((1)(1)), ((1)()()), (()()()()). The a(6) = 15 rooted twice-partitions: (4), (31), (22), (211), (1111), (3)(), (21)(), (111)(), (2)(1), (11)(1), (2)()(), (11)()(), (1)(1)(), (1)()()(), ()()()()().
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
nn=30; ser=x*Product[1/(1-PartitionsP[n-1]x^n),{n,nn}]; Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
-
PARI
seq(n)={Vec(1/prod(k=1, n-1, 1 - numbpart(k-1)*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018
Formula
O.g.f.: x * Product_{n > 0} 1/(1 - P(n-1) x^n) where P = A000041.
Comments