cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A300486 Number of relatively prime or monic partitions of n.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 15, 18, 28, 35, 56, 64, 101, 120, 168, 210, 297, 348, 490, 583, 776, 946, 1255, 1482, 1952, 2335, 2981, 3581, 4565, 5387, 6842, 8119, 10086, 12013, 14863, 17527, 21637, 25525, 31083, 36695, 44583, 52256, 63261, 74171, 88932, 104303, 124754
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime).

Examples

			The a(6) = 8 relatively prime or monic partitions are (6), (51), (411), (321), (3111), (2211), (21111), (111111). Missing from this list are (42), (33), (222).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]],{n,20}]
  • PARI
    a(n)={(n > 1) + sumdiv(n, d, moebius(d)*numbpart(n/d))} \\ Andrew Howroyd, Aug 29 2018

Formula

a(n > 1) = 1 + A000837(n) = 1 + Sum_{d|n} mu(d) * A000041(n/d).

A301706 Number of rooted thrice-partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 43, 91, 201, 422, 918, 1896, 4089, 8376, 17793, 36445, 76446, 155209, 324481, 655426, 1355220, 2741092, 5617505, 11291037, 23086423, 46227338, 93753196, 187754647, 378675055, 754695631, 1518414812, 3016719277, 6037006608, 11984729983
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n. A rooted thrice-partition of n is a choice of a rooted twice-partition of each part in a rooted partition of n.

Examples

			The a(5) = 9 rooted thrice-partitions:
((2)), ((11)), ((1)()), (()()()),
((1))(), (()())(), (())(()),
(())()(),
()()()().
The a(6) = 19 rooted thrice-partitions:
((3)), ((21)), ((111)), ((2)()), ((11)()), ((1)(1)), ((1)()()), (()()()()),
((2))(), ((11))(), ((1)())(), (()()())(), ((1))(()), (()())(()),
((1))()(), (()())()(), (())(())(),
(())()()(),
()()()()().
		

Crossrefs

Programs

  • Mathematica
    twire[n_]:=twire[n]=Sum[Times@@PartitionsP/@(ptn-1),{ptn,IntegerPartitions[n-1]}];
    thrire[n_]:=Sum[Times@@twire/@ptn,{ptn,IntegerPartitions[n-1]}];
    Array[thrire,30]

A301595 Number of thrice-partitions of n.

Original entry on oeis.org

1, 1, 4, 10, 34, 80, 254, 604, 1785, 4370, 11986, 29286, 80355, 193137, 505952, 1239348, 3181970, 7686199, 19520906, 46931241, 117334784, 282021070, 693721166, 1659075192, 4063164983, 9651686516, 23347635094, 55405326513, 133021397071, 313842472333, 749299686508
Offset: 0

Views

Author

Gus Wiseman, Mar 24 2018

Keywords

Comments

A thrice-partition of n is a choice of a twice-partition of each part in a partition of n. Thrice-partitions correspond to intervals in the lattice form of the multiorder of integer partitions.

Examples

			The a(3) = 10 thrice-partitions:
  ((3)), ((21)), ((111)), ((2)(1)), ((11)(1)), ((1)(1)(1)),
  ((2))((1)), ((11))((1)), ((1)(1))((1)),
  ((1))((1))((1)).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
          1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    a:= n-> b(n$2, 3):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jan 25 2019
  • Mathematica
    twie[n_]:=Sum[Times@@PartitionsP/@ptn,{ptn,IntegerPartitions[n]}];
    thrie[n_]:=Sum[Times@@twie/@ptn,{ptn,IntegerPartitions[n]}];
    Array[thrie,30]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1,
         1, b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
    a[n_] := b[n, n, 3];
    a /@ Range[0, 35] (* Jean-François Alcover, May 19 2021, after Alois P. Heinz *)

Formula

O.g.f.: Product_{n > 0} 1/(1 - A063834(n) x^n).

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 25 2019

A301764 Number of ways to choose a constant rooted partition of each part in a constant rooted partition of n such that the flattened sequence is also constant.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 6, 5, 6, 7, 8, 5, 10, 7, 8, 10, 10, 6, 12, 7, 12, 13, 10, 5, 14, 12, 11, 11, 14, 7, 18, 9, 12, 13, 11, 12, 20, 10, 10, 13, 18, 9, 20, 9, 14, 20, 12, 5, 20, 15, 19, 14, 17, 7, 18, 16, 20, 17, 12, 5, 26, 13, 12, 21, 18, 17, 24, 9, 15, 13, 22, 9
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(11) = 8 rooted twice-partitions: (9), (333), (111111111), (4)(4), (22)(22), (1111)(1111), (1)(1)(1)(1)(1), ()()()()()()()()()().
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,1,DivisorSum[n-1,If[#===1,1,DivisorSigma[0,#-1]]&]],{n,100}]
  • PARI
    a(n)=if(n==1, 1, sumdiv(n-1, d, if(d==1, 1, numdiv(d-1)))) \\ Andrew Howroyd, Aug 26 2018

A302094 Number of relatively prime or monic twice-partitions of n.

Original entry on oeis.org

1, 3, 6, 10, 27, 35, 113, 170, 396, 641, 1649, 2318, 5905, 9112, 18678, 32529, 69094, 106210, 227480, 363433, 705210, 1196190, 2325023, 3724233, 7192245, 11915884, 21857887, 36597843, 67406158, 109594872, 201747847, 333400746, 591125465, 987069077, 1743223350
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime). Then a relatively prime or monic twice-partition of n is a choice of a relatively prime or monic partition of each part in a relatively prime or monic partition of n.

Examples

			The a(4) = 10 relatively prime or monic twice-partitions:
(4), (31), (211), (1111),
(3)(1), (21)(1), (111)(1),
(2)(1)(1), (11)(1)(1),
(1)(1)(1)(1).
		

Crossrefs

Programs

  • Mathematica
    ip[n_]:=ip[n]=Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&];
    Table[Sum[Times@@Length/@ip/@ptn,{ptn,ip[n]}],{n,10}]

A301750 Number of rooted twice-partitions of n where the composite rooted partition is strict.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 18, 29, 42, 61, 86, 127, 181, 257, 352, 489, 668, 935, 1270, 1730, 2312, 3101, 4112, 5533, 7345, 9742, 12785, 16793, 21821, 28452, 36908, 48108, 62198, 80337, 103081, 132372, 168805, 215247, 273678
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(8) = 18 rooted twice-partitions where the composite rooted partition is strict:
(6), (51), (42), (321),
(5)(), (41)(), (32)(), (4)(1), (3)(2),
(4)()(), (31)()(), (3)(1)(),
(3)()()(), (21)()()(), (2)(1)()(),
(2)()()()(),
(1)()()()()(),
()()()()()()().
		

Crossrefs

Programs

  • Mathematica
    twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn],{ptn,IntegerPartitions[n-1]}];
    Table[Select[twirtns[n],UnsameQ@@Join@@#&]//Length,{n,30}]

A301760 Number of rooted twice-partitions of n where the composite rooted partition is constant.

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 17, 24, 34, 46, 63, 82, 109, 140, 183, 233, 298, 376, 479, 598, 753, 938, 1171, 1449, 1797, 2210, 2726, 3342, 4095, 4990, 6088, 7388, 8968, 10843, 13099, 15770, 18975, 22756, 27276, 32603, 38925, 46353, 55158, 65479, 77656, 91904, 108645
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(5) = 7 rooted twice-partitions: (3), (111), (2)(), (11)(), (1)(1), (1)()(), ()()()().
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=(1-nn)/(1-x)+Sum[Product[1/(1-x^(d k+1)),{k,0,nn}],{d,nn}];
    CoefficientList[Series[ser,{x,0,nn}],x]

Formula

O.g.f.: 1/(1 - x) + Sum_{n > 0} (-1/(1 - x) + Product_{k >= 0} 1/(1 - x^(n * k + 1))).

A301766 Number of rooted twice-partitions of n where the first rooted partition is strict and the composite rooted partition is constant, i.e., of type (R,Q,R).

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 7, 9, 11, 13, 16, 19, 22, 26, 32, 36, 42, 52, 59, 66, 79, 93, 108, 125, 141, 162, 192, 222, 248, 285, 331, 375, 430, 492, 555, 632, 719, 816, 929, 1051, 1177, 1327, 1510, 1701, 1908, 2146, 2408, 2705, 3035, 3388, 3792, 4257, 4751, 5284, 5894
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(9) = 11 rooted twice-partitions:
(7), (1111111),
(6)(), (33)(), (222)(), (111111)(), (11111)(1), (22)(2), (1111)(11),
(1111)(1)(), (111)(11)().
		

Crossrefs

Programs

  • Mathematica
    twirtns[n_]:=Join@@Table[Tuples[IntegerPartitions[#-1]&/@ptn],{ptn,IntegerPartitions[n-1]}];
    Table[Select[twirtns[n],UnsameQ@@Total/@#&&SameQ@@Join@@#&]//Length,{n,20}]
  • PARI
    a(n)=if(n<3, 1, sum(k=1, n-2, polcoef(prod(j=0, (n-2)\k, 1 + x^(j*k + 1) + O(x^n)), n-1))) \\ Andrew Howroyd, Aug 26 2018

Extensions

Terms a(26) and beyond from Andrew Howroyd, Aug 26 2018

A301751 Number of ways to choose a rooted partition of each part in a strict rooted partition of n.

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 17, 32, 54, 100, 166, 289, 494, 840, 1393, 2400, 3931, 6498, 10861, 17728, 28863, 47557, 77042, 123881, 201172, 322459, 517032, 827993, 1316064, 2084632, 3328204, 5236828, 8247676, 13005652, 20417628, 31934709, 49970815, 77789059, 121144373
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(7) = 17 rooted twice-partitions:
(5), (41), (32), (311), (221), (2111), (11111),
(4)(), (31)(), (22)(), (211)(), (1111)(), (3)(1), (21)(1), (111)(1),
(2)(1)(), (11)(1)().
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=x*Product[1+PartitionsP[n-1]x^n,{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
  • PARI
    seq(n)={Vec(prod(k=1, n-1, 1 + numbpart(k-1)*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018

Formula

O.g.f.: x * Product_{n > 0} (1 + A000041(n-1) x^n).

A301753 Number of ways to choose a strict rooted partition of each part in a rooted partition of n.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 25, 43, 66, 108, 166, 269, 408, 643, 975, 1517, 2277, 3497, 5223, 7936, 11803, 17736, 26219, 39174, 57594, 85299, 124957, 183987, 268158, 392685, 569987, 830282, 1200843, 1740422, 2507823, 3620550, 5197885, 7472229, 10694865, 15319700
Offset: 1

Views

Author

Gus Wiseman, Mar 26 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1.

Examples

			The a(7) = 16 rooted twice-partitions:
(5), (32), (41),
(2)(2), (3)(1), (4)(), (21)(1), (31)(),
(1)(1)(1), (2)(1)(), (3)()(), (21)()(),
(1)(1)()(), (2)()()(),
(1)()()()(),
()()()()()().
		

Crossrefs

Programs

  • Mathematica
    nn=50;
    ser=x*Product[1/(1-PartitionsQ[n-1]x^n),{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
  • PARI
    seq(n)={my(u=Vec(prod(k=1, n-1, 1 + x^k + O(x^n)))); Vec(1/prod(k=1, n-1, 1 - u[k]*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018

Formula

O.g.f.: x * Product_{n > 0} 1/(1 - A000009(n-1) x^n).
Showing 1-10 of 18 results. Next