cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301482 Composite numbers whose sum of aliquot parts divide the sum of the squares of their aliquot parts.

Original entry on oeis.org

8, 22, 27, 32, 77, 125, 128, 243, 343, 494, 512, 611, 660, 1073, 1281, 1331, 1425, 2033, 2048, 2187, 2197, 2332, 3125, 4172, 4565, 4913, 5293, 6031, 6859, 8192, 9983, 12167, 13969, 15818, 15947, 16807, 17485, 19683, 23489, 23840, 24389, 25241, 25389, 29791, 32768
Offset: 1

Views

Author

Paolo P. Lava, Mar 22 2018

Keywords

Comments

Semiprimes in the sequence: 22, 77, 611, 1073, 2033, 5293, 6031, 9983, 13969, 15947, 23489, 25241, 40301, 49901, 50249, 51101, 56759, 65017, 71677, 85079, 97217, 98099, 99101, .... - Robert Israel, Mar 29 2018
2^k is a term for all odd k > 1. - Michael S. Branicky, Aug 22 2021

Examples

			Aliquot parts of 77 are 1, 7, 11. Then (1^2 + 7^2 + 11^2)/(1 + 7 + 11) = 171/19 = 9.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(n)
    if not isprime(n) and frac((add(p^2,p=divisors(n))-n^2)/(sigma(n)-n))=0
    then n; fi; end: seq(P(i),i=2..35*10^3);
  • Mathematica
    aQ[n_] := CompositeQ[n] && Divisible[DivisorSigma[2, n] - n^2, DivisorSigma[1, n] - n]; Select[Range[33000], aQ] (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    isok(n) = (n!=1) && !isprime(n) && (((sigma(n,2) - n^2) % (sigma(n) - n)) == 0); \\ Michel Marcus, Mar 23 2018
    
  • Python
    from sympy import divisors
    def ok(n):
        divs = divisors(n)[:-1]
        return len(divs) > 1 and sum(d**2 for d in divs)%sum(divs) == 0
    print(list(filter(ok, range(4, 32769)))) # Michael S. Branicky, Aug 22 2021