A301482 Composite numbers whose sum of aliquot parts divide the sum of the squares of their aliquot parts.
8, 22, 27, 32, 77, 125, 128, 243, 343, 494, 512, 611, 660, 1073, 1281, 1331, 1425, 2033, 2048, 2187, 2197, 2332, 3125, 4172, 4565, 4913, 5293, 6031, 6859, 8192, 9983, 12167, 13969, 15818, 15947, 16807, 17485, 19683, 23489, 23840, 24389, 25241, 25389, 29791, 32768
Offset: 1
Examples
Aliquot parts of 77 are 1, 7, 11. Then (1^2 + 7^2 + 11^2)/(1 + 7 + 11) = 171/19 = 9.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1009 (terms below 10^9, terms 1..100 from Paolo P. Lava)
Programs
-
Maple
with(numtheory): P:=proc(n) if not isprime(n) and frac((add(p^2,p=divisors(n))-n^2)/(sigma(n)-n))=0 then n; fi; end: seq(P(i),i=2..35*10^3);
-
Mathematica
aQ[n_] := CompositeQ[n] && Divisible[DivisorSigma[2, n] - n^2, DivisorSigma[1, n] - n]; Select[Range[33000], aQ] (* Amiram Eldar, Aug 17 2019 *)
-
PARI
isok(n) = (n!=1) && !isprime(n) && (((sigma(n,2) - n^2) % (sigma(n) - n)) == 0); \\ Michel Marcus, Mar 23 2018
-
Python
from sympy import divisors def ok(n): divs = divisors(n)[:-1] return len(divs) > 1 and sum(d**2 for d in divs)%sum(divs) == 0 print(list(filter(ok, range(4, 32769)))) # Michael S. Branicky, Aug 22 2021
Comments