cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301483 a(n) = floor(a(n-1)/(2^(1/3)-1)) with a(1)=1.

Original entry on oeis.org

1, 3, 11, 42, 161, 619, 2381, 9160, 35241, 135583, 521631, 2006882, 7721121, 29705639, 114287161, 439699520, 1691665681, 6508382763, 25039844851, 96336348522, 370636962881, 1425959779059, 5486126574341, 21106896023080, 81205027571321, 312421897357543
Offset: 1

Views

Author

Gregory Gerard Wojnar, Mar 22 2018

Keywords

Comments

a(n+1)/a(n) approaches 1/(2^(1/3)-1).

Crossrefs

Cf. A024537, A195350 (also has 1/(2^(1/3)-1) ratio), A303647.

Programs

  • Magma
    [n le 1 select 1 else Floor(Self(n-1)/(2^(1/3)-1)): n in [1..30]]; // Vincenzo Librandi, Apr 04 2018
  • Maple
    a:=proc(n) option remember;
       if n<1 then 0  else if n=1 then 1 else floor(a(n-1)/(2^(1/3)-1))
    end if end if end proc:
    seq(a(n), n=1..25);
  • Mathematica
    RecurrenceTable[{a[1]==1, a[n]==Floor[a[n-1]/(2^(1/3)-1)]}, a, {n, 30}] (* Vincenzo Librandi, Apr 04 2018 *)
  • PARI
    a=vector(50); a[1]=1; for(n=2, #a, a[n]=a[n-1]\(2^(1/3)-1)); a \\ Altug Alkan, Mar 22 2018
    

Formula

Conjectures from Colin Barker, Apr 01 2018: (Start)
G.f.: x*(1 - x - x^2) / ((1 - x)*(1 - 3*x - 3*x^2 - x^3)).
a(n) = 4*a(n-1) - 2*a(n-3) - a(n-4) for n>4.
(End)
a(n) = A195350(n) + A303647(n-2) - A195339(n-4) (conjectured).