A301484 Decimal expansion of J_0(2)/J_1(2) = 1 - 1/(2 - 1/(3 - 1/(4 - ...))).
3, 8, 8, 2, 1, 0, 7, 6, 5, 5, 6, 7, 7, 9, 5, 7, 8, 7, 5, 1, 1, 6, 5, 8, 5, 5, 7, 3, 0, 6, 5, 3, 7, 0, 2, 9, 2, 2, 1, 7, 4, 5, 0, 4, 0, 7, 2, 5, 3, 2, 9, 8, 1, 8, 6, 4, 6, 4, 2, 8, 2, 7, 5, 9, 3, 7, 3, 5, 1, 7, 3, 9, 5, 6, 3, 8, 2, 4, 2, 0, 1, 2, 1, 1, 0, 1, 9, 3, 5, 1, 6, 2, 8, 2, 8, 0, 3, 1, 9, 6, 0, 5, 2, 1, 6
Offset: 0
Examples
0.38821076556779578751165855730653702922174504072532981864642827593735174...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Magma
SetDefaultRealField(RealField(100)); BesselFunction(0, 2)/BesselFunction(1, 2); // G. C. Greubel, Dec 31 2019
-
Maple
evalf(BesselJ(0, 2)/BesselJ(1, 2), 100); # G. C. Greubel, Dec 31 2019
-
Mathematica
1 +ContinuedFractionK[(-1)^(n+1)*n, {n,2,Infinity}] N[1+ContinuedFractionK[(-1)^(n+1)*n, {n,2,50}], 105] (* 105 decimals *) RealDigits[BesselJ[0, 2]/BesselJ[1, 2], 10, 100][[1]] (* G. C. Greubel, Dec 31 2019 *)
-
PARI
default(realprecision, 100); besselj(0,2)/besselj(1,2) \\ Altug Alkan, Mar 22 2018
-
Sage
numerical_approx(bessel_J(0,2)/bessel_J(1,2), digits=100) # G. C. Greubel, Dec 31 2019
Comments