cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301484 Decimal expansion of J_0(2)/J_1(2) = 1 - 1/(2 - 1/(3 - 1/(4 - ...))).

Original entry on oeis.org

3, 8, 8, 2, 1, 0, 7, 6, 5, 5, 6, 7, 7, 9, 5, 7, 8, 7, 5, 1, 1, 6, 5, 8, 5, 5, 7, 3, 0, 6, 5, 3, 7, 0, 2, 9, 2, 2, 1, 7, 4, 5, 0, 4, 0, 7, 2, 5, 3, 2, 9, 8, 1, 8, 6, 4, 6, 4, 2, 8, 2, 7, 5, 9, 3, 7, 3, 5, 1, 7, 3, 9, 5, 6, 3, 8, 2, 4, 2, 0, 1, 2, 1, 1, 0, 1, 9, 3, 5, 1, 6, 2, 8, 2, 8, 0, 3, 1, 9, 6, 0, 5, 2, 1, 6
Offset: 0

Views

Author

David H Bailey, Mar 22 2018

Keywords

Comments

These are the first 105 decimal digits of the constant defined by the continued fraction 1 - 1/(2 - 1/(3 - 1/(4 - ... -1/m))) as m goes to infinity. The continued fraction appears to converge fairly rapidly. Just 50 terms, for instance, suffices to produce a numerical value that appears to be good to 100 digits, based on comparisons with more terms and higher precision. This sequence was brought to the author's attention by Beresford Parlett of U.C. Berkeley.
Addendum: This sequence has been identified by Karl Dilcher. He noted that the sequence of continued fraction convergents is the same as A058797. In short, the real constant whose decimal expansion is given above is given by BesselJ[0,2]/BesselJ[1,2] (Mathematica expression). The comments at A058797 have quite a bit of additional information and references.
Equivalent to the imaginary part of the infinite continued fraction i + 1/(2i + 1/(3i + ...)) where i = sqrt(-1). - Matthew Niemiro, Dec 22 2019

Examples

			0.38821076556779578751165855730653702922174504072532981864642827593735174...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); BesselFunction(0, 2)/BesselFunction(1, 2); // G. C. Greubel, Dec 31 2019
    
  • Maple
    evalf(BesselJ(0, 2)/BesselJ(1, 2), 100); # G. C. Greubel, Dec 31 2019
  • Mathematica
    1 +ContinuedFractionK[(-1)^(n+1)*n, {n,2,Infinity}]
    N[1+ContinuedFractionK[(-1)^(n+1)*n, {n,2,50}], 105] (* 105 decimals *)
    RealDigits[BesselJ[0, 2]/BesselJ[1, 2], 10, 100][[1]] (* G. C. Greubel, Dec 31 2019 *)
  • PARI
    default(realprecision, 100); besselj(0,2)/besselj(1,2) \\ Altug Alkan, Mar 22 2018
    
  • Sage
    numerical_approx(bessel_J(0,2)/bessel_J(1,2), digits=100) # G. C. Greubel, Dec 31 2019

Formula

Equals BesselJ(0,2)/BesselJ(1,2) = A091681 / A348607.