A338413 Number of 2 X 2 matrices with integer entries in [-n,n] that are diagonalizable over the complex numbers.
65, 569, 2281, 6313, 14265, 28033, 49921, 82545, 128945, 192809, 277849, 388185, 528617, 704049, 919857, 1181393, 1495569, 1868249, 2306921, 2818441, 3410809, 4091937, 4870273, 5754449, 6753233, 7877641, 9136441, 10540633, 12101001, 13828465, 15734545, 17830353, 20129713, 22644553, 25387929
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Wikipedia, Diagonalizable matrix
Crossrefs
a(1) is given by A091470(2).
Programs
-
Maple
N:= 30: # for a(1)..a(N) V:= Vector(N): for t from 1 to N do for d in select(`<=`,numtheory:-divisors(t^2),N) do for n from max(d, t^2/d) to N do V[n]:= V[n] + (8*(n-t)+4) od od od: for n from 1 to N do V[n]:= (2*n+1)^4 - (V[n] + 4*n*(2*n+1)) od: convert(V,list); # Robert Israel, Nov 12 2020
-
Mathematica
a[n_] := Length[Select[Tuples[Tuples[Range[-n, n], 2], 2], DiagonalizableMatrixQ]];
Extensions
More terms from Robert Israel, Nov 12 2020
Comments