cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A301544 Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_6(k)).

Original entry on oeis.org

1, 1, 66, 796, 7102, 70178, 702813, 6439533, 56938814, 495807251, 4218728690, 34991240657, 284295574638, 2269120791410, 17804772970005, 137455131596032, 1045354069608726, 7839809431539193, 58027706392726849, 424187792875896932, 3064539107659680502
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 23 2018

Keywords

Crossrefs

Product_{k>=1} 1/(1 - x^k)^sigma_m(k): A006171 (m=0), A061256 (m=1), A275585 (m=2), A288391 (m=3), A301542 (m=4), A301543 (m=5), this sequence (m=6), A301545 (m=7), A301546 (m=8), A301547 (m=9).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[6, k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(8 * 2^(3/8) * Pi * (Zeta(7)/15)^(1/8) * n^(7/8)/7 - Pi*(5/Zeta(7))^(1/8) * n^(1/8) / (504 * 2^(3/8) * 3^(7/8)) + 45*Zeta(7) / (16*Pi^6)) * Zeta(7)^(1/16) / (2^(29/16) * 15^(1/16) * n^(9/16)).
G.f.: exp(Sum_{k>=1} sigma_7(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018